4.6 Article

Optical Clearing in Dense Connective Tissues to Visualize Cellular Connectivity In Situ

期刊

PLOS ONE
卷 10, 期 1, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0116662

关键词

-

资金

  1. National Institutes of Health (NIH) [R01 AR063712, R21 AR064178, R21 AR066230, R21 AR065659, R03 AR065201]
  2. NSF [1349735]
  3. Div Of Civil, Mechanical, & Manufact Inn
  4. Directorate For Engineering [1349735] Funding Source: National Science Foundation

向作者/读者索取更多资源

Visualizing the three-dimensional morphology and spatial patterning of cells embedded deep within dense connective tissues of the musculoskeletal system has been possible only by utilizing destructive techniques. Here we utilize fructose-based clearing solutions to image cell connectivity and deep tissue-scale patterning in situ by standard confocal microscopy. Optical clearing takes advantage of refractive index matching of tissue and the embedding medium to visualize light transmission through a broad range of bovine and whole mount murine tissues, including cartilage, bone, and ligament, of the head and hindlimb. Using non-destructive methods, we show for the first time intercellular chondrocyte connections throughout the bulk of cartilage, and we reveal in situ patterns of osteocyte processes and the lacunar-canalicular system deep within mineralized cortical bone. Optical clearing of connective tissues is expected to find broad application for the study of cell responses in normal physiology and disease pathology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据