4.6 Article

Interplanting Annual Ryegrass, Wheat, Oat, and Corn to Mitigate Iron Deficiency in Dry Beans

期刊

PLOS ONE
卷 9, 期 12, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0115673

关键词

-

资金

  1. Western Sustainable Agriculture Research and Extension Graduate Student grant

向作者/读者索取更多资源

This study evaluated whether grass intercropping can be used to alleviate Fe deficiency chlorosis in dry beans (Phaseolus vulgaris L.) grown in high pH, calcareous soils with low organic matter. Field studies were conducted at the University of Wyoming Sustainable Agriculture Research and Extension Center in 2009 and 2010. Black- and navy beans were grown alone or intercropped with annual ryegrass (Lolium multiflorum Lam.), oat (Avena sativa L.), corn (Zea mays L.), or spring wheat (Triticum aestivum L.) in a two-factor factorial strip-plot randomized complete block design. All four grass species increased chlorophyll intensity in dry beans. However, grass species did not increase iron (Fe) concentration in dry bean tissues suggesting inefficient utilization of Fe present in the dry bean tissues. In 2009, nitrate-nitrogen (NO3-N) and manganese (Mn) concentration in bean tissue were greater in bean monoculture than in grass intercropped beans. Bean monoculture also had greater soil NO3-N concentrations than grass intercropped treatments. In 2009, grass intercrops reduced dry bean yield >25% compared to bean monoculture. Annual ryegrass was the least competitive of the four annual grass species. This suggests that competition from grasses for nutrients, water, or light may have outweighed benefits accruing from grass intercropping. Additional studies are required to determine the appropriate grass and dry bean densities, as well as the optimum time of grass removal.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据