4.6 Article

Structural Insights into the Mechanism for Recognizing Substrate of the Cytochrome P450 Enzyme TxtE

期刊

PLOS ONE
卷 8, 期 11, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0081526

关键词

-

资金

  1. National Natural Science Foundation [31100529, 31100528]

向作者/读者索取更多资源

Thaxtomins, a family of phytotoxins produced by Streptomyces spp., can cause dramatic plant cell hypertrophy and seedling stunting. Thaxtomin A is the dominant form from Streptomyces scabies and has demonstrated herbicidal action. TxtE, a cytochrome P450 enzyme from Streptomyces scabies 87.22, catalyzes direct nitration of the indolyl moiety of L-tryptophan to L-4-nitrotryptophan using nitric oxide, dioxygen and NADPH. The crystal structure of TxtE was determined at 2.1 angstrom resolution and described in this work. A clearly defined substrate access channel is observed and can be classified as channel 2a, which is common in bacteria cytochrome P450 enzymes. A continuous hydrogen bond chain from the active site to the external solvent is observed. Compared with other cytochrome P450 enzymes, TxtE shows a unique proton transfer pathway which crosses the helix I distortion. Polar contacts of Arg59, Tyr89, Asn293, Thr296, and Glu394 with L-tryptophan are seen using molecular docking analysis, which are potentially important for substrate recognition and binding. After mutating Arg59, Asn293, Thr296 or Glu394 to leucine, the substrate binding ability of TxtE was lost or decreased significantly. Based on the docking and mutation results, a possible mechanism for substrate recognition and binding is proposed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据