4.6 Article

Transcriptome Sequence and Plasmid Copy Number Analysis of the Brewery Isolate Pediococcus claussenii ATCC BAA-344T during Growth in Beer

期刊

PLOS ONE
卷 8, 期 9, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0073627

关键词

-

资金

  1. Natural Sciences and Engineering Research Council of Canada (NSERC)
  2. American Society of Brewing Chemists Foundation
  3. MillerCoors Brewing Company
  4. Golden CO
  5. United States Department of Agriculture CREES National Research Initiative [2007-35504-18249]
  6. NSERC [24067]

向作者/读者索取更多资源

Growth of specific lactic acid bacteria in beer leads to spoiled product and economic loss for the brewing industry. Microbial growth is typically inhibited by the combined stresses found in beer (e. g., ethanol, hops, low pH, minimal nutrients); however, certain bacteria have adapted to grow in this harsh environment. Considering little is known about the mechanisms used by bacteria to grow in and spoil beer, transcriptome sequencing was performed on a variant of the beer-spoilage organism Pediococcus claussenii ATCC BAA-344(T) (Pc344-358). Illumina sequencing was used to compare the transcript levels in Pc344-358 growing mid-exponentially in beer to those in nutrient-rich MRS broth. Various operons demonstrated high gene expression in beer, several of which are involved in nutrient acquisition and overcoming the inhibitory effects of hop compounds. As well, genes functioning in cell membrane modification and biosynthesis demonstrated significantly higher transcript levels in Pc344-358 growing in beer. Three plasmids had the majority of their genes showing increased transcript levels in beer, whereas the two cryptic plasmids showed slightly decreased gene expression. Follow-up analysis of plasmid copy number in both growth environments revealed similar trends, where more copies of the three non-cryptic plasmids were found in Pc344-358 growing in beer. Transcriptome sequencing also enabled the addition of several genes to the P. claussenii ATCC BAA-344(T) genome annotation, some of which are putatively transcribed as non-coding RNAs. The sequencing results not only provide the first transcriptome description of a beer-spoilage organism while growing in beer, but they also highlight several targets for future exploration, including genes that may have a role in the general stress response of lactic acid bacteria.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据