4.6 Article

Visualized Computational Predictions of Transcriptional Effects by Intronic Endogenous Retroviruses

期刊

PLOS ONE
卷 8, 期 8, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0071971

关键词

-

资金

  1. Canadian Institutes of Health Research [MOP-10825]

向作者/读者索取更多资源

When endogenous retroviruses (ERVs) or other transposable elements (TEs) insert into an intron, the consequence on gene transcription can range from negligible to a complete ablation of normal transcripts. With the advance of sequencing technology, more and more insertionally polymorphic or private TE insertions are being identified in humans and mice, of which some could have a significant impact on host gene expression. Nevertheless, an efficient and low cost approach to prioritize their potential effect on gene transcription has been lacking. By building a computational model based on artificial neural networks (ANN), we demonstrate the feasibility of using machine-learning approaches to predict the likelihood that intronic ERV insertions will have major effects on gene transcription, focusing on the two ERV families, namely Intracisternal A-type Particle (IAP) and Early Transposon (ETn)/MusD elements, which are responsible for the majority of ERV-induced mutations in mice. We trained the ANN model using properties associated with these ERVs known to cause germ-line mutations (positive cases) and properties associated with likely neutral ERVs of the same families (negative cases), and derived a set of prediction plots that can visualize the likelihood of affecting gene transcription by ERV insertions. Our results show a highly reliable prediction power of our model, and offer a potential approach to computationally screen for other types of TE insertions that may affect gene transcription or even cause disease.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据