4.6 Article

Suppression of DS1 Phosphatidic Acid Phosphatase Confirms Resistance to Ralstonia solanacearum in Nicotiana benthamiana

期刊

PLOS ONE
卷 8, 期 9, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0075124

关键词

-

资金

  1. Ministry of Education, Culture, Sports, Science and Technology, Japan [16780031, 18780029, 15028214, 16380037]
  2. Asahi Glass Foundation
  3. [25-7248]
  4. Grants-in-Aid for Scientific Research [13J07248, 25117719] Funding Source: KAKEN

向作者/读者索取更多资源

Nicotiana benthamiana is susceptible to Ralstonia solanacearum. To analyze molecular mechanisms for disease susceptibility, we screened a gene-silenced plant showing resistance to R. solanacearum, designated as DS1 (Disease suppression 1). The deduced amino acid sequence of DS1 cDNA encoded a phosphatidic acid phosphatase (PAP) 2. DS1 expression was induced by infection with a virulent strain of R. solanacearum in an hrp-gene-dependent manner. DS1 rescued growth defects of the temperature-sensitive Delta lpp1 Delta dpp1 Delta pah1 mutant yeast. Recombinant DS1 protein showed Mg2+-independent PAP activity. DS1 plants showed reduced PAP activity and increased phosphatidic acid (PA) content. After inoculation with R. solanacearum, DS1 plants showed accelerated cell death, over-accumulation of reactive oxygen species (ROS), and hyper-induction of PR-4 expression. In contrast, DS1-overexpressing tobacco plants showed reduced PA content, greater susceptibility to R. solanacearum, and reduced ROS production and PR-4 expression. The DS1 phenotype was partially compromised in the plants in which both DS1 and NbCoi1 or DS1 and NbrbohB were silenced. These results show that DS1 PAP may affect plant immune responses related to ROS and JA cascades via regulation of PA levels. Suppression of DS1 function or DS1 expression could rapidly activate plant defenses to achieve effective resistance against Ralstonia solanacearum.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据