4.6 Article

Alpha-Helical Destabilization of the Bcl-2-BH4-Domain Peptide Abolishes Its Ability to Inhibit the IP3 Receptor

期刊

PLOS ONE
卷 8, 期 8, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0073386

关键词

-

资金

  1. Research Council KU Leuven [OT/STRT1/10/044]
  2. Research Foundation - Flanders (F.W.O.) [G.0788.11, G.0571.12, G.0819.13]
  3. Interuniversity Attraction Poles Program (Belgian Science Policy) [IAP/P7]
  4. Royal Flemish Academy of Belgium for Science and the Arts (Research Award from the Octaaf Dupont Foundation)
  5. Research Foundation - Flanders

向作者/读者索取更多资源

The anti-apoptotic Bcl-2 protein is the founding member and namesake of the Bcl-2-protein family. It has recently been demonstrated that Bcl-2, apart from its anti-apoptotic role at mitochondrial membranes, can also directly interact with the inositol 1,4,5-trisphosphate receptor (IP3R), the primary Ca2+-release channel in the endoplasmic reticulum (ER). Bcl-2 can thereby reduce pro-apoptotic IP3R-mediated Ca2+ release from the ER. Moreover, the Bcl-2 homology domain 4 (Bcl-2-BH4) has been identified as essential and sufficient for this IP3R-mediated anti-apoptotic activity. In the present study, we investigated whether the reported inhibitory effect of a Bcl-2-BH4 peptide on the IP (3)R1 was related to the distinctive alpha-helical conformation of the BH4 domain peptide. We therefore designed a peptide with two glycine hinges replacing residues I14 and V15, of the wild-type Bcl-2-BH4 domain (Bcl-2-BH4-IV/GG). By comparing the structural and functional properties of the Bcl-2-BH4-IV/GG peptide with its native counterpart, we found that the variant contained reduced alpha-helicity, neither bound nor inhibited the IP (3)R1 channel, and in turn lost its anti-apoptotic effect. Similar results were obtained with other substitutions in Bcl-2-BH4 that destabilized the alpha-helix with concomitant loss of IP3R inhibition. These results provide new insights for the further development of Bcl-2-BH4-derived peptides as specific inhibitors of the IP3R with significant pharmacological implications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据