4.6 Article

Few Single Nucleotide Variations in Exomes of Human Cord Blood Induced Pluripotent Stem Cells

期刊

PLOS ONE
卷 8, 期 4, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0059908

关键词

-

资金

  1. Loma Linda University Department of Medicine
  2. DOD [W81XWH-11-1-0607]
  3. Department of Pathology and Human Anatomy
  4. Center for Health Disparities and Molecular Medicine at Loma Linda University
  5. Ministry of Science and Technology of China [2011AA020118]
  6. Strategic Priority Research Program'' of the Chinese Academy of Sciences, Stem Cell and Regenerative Medicine Research [XDA01040405]

向作者/读者索取更多资源

The effect of the cellular reprogramming process per se on mutation load remains unclear. To address this issue, we performed whole exome sequencing analysis of induced pluripotent stem cells (iPSCs) reprogrammed from human cord blood (CB) CD34(+) cells. Cells from a single donor and improved lentiviral vectors for high-efficiency (2-14%) reprogramming were used to examine the effects of three different combinations of reprogramming factors: OCT4 and SOX2 (OS), OS and ZSCAN4 (OSZ), OS and MYC and KLF4 (OSMK). Five clones from each group were subject to whole exome sequencing analysis. We identified 14, 11, and 9 single nucleotide variations (SNVs), in exomes, including untranslated regions (UTR), in the five clones of OSMK, OS, and OSZ iPSC lines. Only 8, 7, and 4 of these, respectively, were protein-coding mutations. An average of 1.3 coding mutations per CB iPSC line is remarkably lower than previous studies using fibroblasts and low-efficiency reprogramming approaches. These data demonstrate that point nucleotide mutations during cord blood reprogramming are negligible and that the inclusion of genome stabilizers like ZSCAN4 during reprogramming may further decrease reprogramming-associated mutations. Our findings provide evidence that CB is a superior source of cells for iPSC banking.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据