4.6 Article

A Statistical Framework for Improving Genomic Annotations of Prokaryotic Essential Genes

期刊

PLOS ONE
卷 8, 期 3, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0058178

关键词

-

资金

  1. CCHMC Trustee Award
  2. Cystic Fibrosis Foundation [HASSETT07G0, R457-CR01]

向作者/读者索取更多资源

Large-scale systematic analysis of gene essentiality is an important step closer toward unraveling the complex relationship between genotypes and phenotypes. Such analysis cannot be accomplished without unbiased and accurate annotations of essential genes. In current genomic databases, most of the essential gene annotations are derived from whole-genome transposon mutagenesis (TM), the most frequently used experimental approach for determining essential genes in microorganisms under defined conditions. However, there are substantial systematic biases associated with TM experiments. In this study, we developed a novel Poisson model-based statistical framework to simulate the TM insertion process and subsequently correct the experimental biases. We first quantitatively assessed the effects of major factors that potentially influence the accuracy of TM and subsequently incorporated relevant factors into the framework. Through iteratively optimizing parameters, we inferred the actual insertion events occurred and described each gene's essentiality on probability measure. Evaluated by the definite mapping of essential gene profile in Escherichia coli, our model significantly improved the accuracy of original TM datasets, resulting in more accurate annotations of essential genes. Our method also showed encouraging results in improving subsaturation level TM datasets. To test our model's broad applicability to other bacteria, we applied it to Pseudomonas aeruginosa PAO1 and Francisella tularensis novicida TM datasets. We validated our predictions by literature as well as allelic exchange experiments in PAO1. Our model was correct on six of the seven tested genes. Remarkably, among all three cases that our predictions contradicted the TM assignments, experimental validations supported our predictions. In summary, our method will be a promising tool in improving genomic annotations of essential genes and enabling large-scale explorations of gene essentiality. Our contribution is timely considering the rapidly increasing essential gene sets. A Webserver has been set up to provide convenient access to this tool. All results and source codes are available for download upon publication at http://research.cchmc.org/essentialgene/.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据