4.6 Article

RING Finger Protein 11 Targets TBK1/IKKi Kinases to Inhibit Antiviral Signaling

期刊

PLOS ONE
卷 8, 期 1, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0053717

关键词

-

资金

  1. NIH [PO1CA128115, RO1GM083143]

向作者/读者索取更多资源

A key feature of the innate antiviral immune response is a rapid nonspecific response to virus infection largely mediated by the induction and extracellular secretion of type I interferons (IFNs) that restrict virus replication. Cytoplasmic sensors such as RIG-I recognize viral RNA and trigger antiviral signaling pathways that upregulate IFN transcription. However, it remains largely unknown how antiviral signaling is negatively regulated to maintain homeostasis after the elimination of virus. In this report, we have identified the RING domain-containing protein RING finger 11 (RNF11) as a novel negative regulator of innate antiviral signaling. Overexpression of RNF11 downregulated IFN-beta expression and enhanced viral replication whereas siRNA-mediated knockdown of RNF11 suppressed viral replication. RNF11 interacted with the noncanonical IKK kinases TBK1/IKKi and attenuated their Lys63-linked polyubiquitination by blocking interactions with the E3 ligase TRAF3. The inhibitory function of RNF11 was dependent on the ubiquitin-binding adaptor molecule TAX1BP1 which was required for RNF11 to target TBK1/IKKi. Collectively, these results indicate that RNF11 functions together with TAX1BP1 to restrict antiviral signaling and IFN-beta production.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据