4.6 Article

c-Jun Amino-Terminal Kinase-1 Mediates Glucose-Responsive Upregulation of the RNA Editing Enzyme ADAR2 in Pancreatic Beta-Cells

期刊

PLOS ONE
卷 7, 期 11, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0048611

关键词

-

资金

  1. Ministry of Science and Technology (973 Program) [2012CB524900, 2011CB910900]
  2. National Natural Science Foundation [81021002, 30988002, 30830033]
  3. Chinese Academy of Sciences [KSCX2-EW-R-09, KSCX2-EW-Q-1-09]
  4. Science and Technology Commission of Shanghai Municipality [10XD1406400]
  5. Shanghai Institutes for Biological Sciences [2011KIP306]

向作者/读者索取更多资源

A-to-I RNA editing catalyzed by the two main members of the adenosine deaminase acting on RNA (ADAR) family, ADAR1 and ADAR2, represents a RNA-based recoding mechanism implicated in a variety of cellular processes. Previously we have demonstrated that the expression of ADAR2 in pancreatic islet beta-cells is responsive to the metabolic cues and ADAR2 deficiency affects regulated cellular exocytosis. To investigate the molecular mechanism by which ADAR2 is metabolically regulated, we found that in cultured beta-cells and primary islets, the stress-activated protein kinase JNK1 mediates the upregulation of ADAR2 in response to changes of the nutritional state. In parallel with glucose induction of ADAR2 expression, JNK phosphorylation was concurrently increased in insulin-secreting INS-1 beta-cells. Pharmacological inhibition of JNKs or siRNA knockdown of the expression of JNK1 prominently suppressed glucose-augmented ADAR2 expression, resulting in decreased efficiency of ADAR2 auto-editing. Consistently, the mRNA expression of Adar2 was selectively reduced in the islets from JNK1 null mice in comparison with that of wild-type littermates or JNK2 null mice, and ablation of JNK1 diminished high-fat diet-induced Adar2 expression in the islets from JNK1 null mice. Furthermore, promoter analysis of the mouse Adar2 gene identified a glucose-responsive region and revealed the transcription factor c-Jun as a driver of Adar2 transcription. Taken together, these results demonstrate that JNK1 serves as a crucial component in mediating glucose-responsive upregulation of ADAR2 expression in pancreatic beta-cells. Thus, the JNK1 pathway may be functionally linked to the nutrient-sensing actions of ADAR2-mediated RNA editing in professional secretory cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据