4.6 Article

Selective Over-Expression of Endothelin-1 in Endothelial Cells Exacerbates Inner Retinal Edema and Neuronal Death in Ischemic Retina

期刊

PLOS ONE
卷 6, 期 10, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0026184

关键词

-

资金

  1. Research Grants Council of Hong Kong (RGC) HKU [7220/02M, 7313/04M]

向作者/读者索取更多资源

The level of endothelin-1 (ET-1), a potent vasoconstrictor, was associated with retinopathy under ischemia. The effects of endothelial endothelin-1 (ET-1) over-expression in a transgenic mouse model using Tie-1 promoter (TET-1 mice) on pathophysiological changes of retinal ischemia were investigated by intraluminal insertion of a microfilament up to middle cerebral artery (MCA) to transiently block the ophthalmic artery. Two-hour occlusion and twenty-two-hour reperfusion were performed in homozygous (Hm) TET-1 mice and their non-transgenic (NTg) littermates. Presence of pyknotic nuclei in ganglion cell layer (GCL) was investigated in paraffin sections of ipsilateral (ischemic) and contralateral (non-ischemic) retinae, followed by measurement of the thickness of inner retinal layer. Moreover, immunocytochemistry of glial fibrillary acidic protein (GFAP), glutamine synthetase (GS) and aquaporin-4 (AQP4) peptides on retinal sections were performed to study glial cell reactivity, glutamate metabolism and water accumulation, respectively after retinal ischemia. Similar morphology was observed in the contralateral retinae of NTg and Hm TET-1 mice, whereas ipsilateral retina of NTg mice showed slight structural and cellular changes compared with the corresponding contralateral retina. Ipsilateral retinae of Hm TET-1 mice showed more significant changes when compared with ipsilateral retina of NTg mice, including more prominent cell death in GCL characterized by the presence of pyknotic nuclei, elevated GS immunoreactivity in Muller cell bodies and processes, increased AQP-4 immunoreactivity in Muller cell processes, and increased inner retinal thickness. Thus, over-expression of endothelial ET-1 in TET-1 mice may contribute to increased glutamate-induced neurotoxicity on neuronal cells and water accumulation in inner retina leading to edema.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据