4.6 Article

Dendritic Cells Transduced to Express Interleukin 4 Reduce Diabetes Onset in Both Normoglycemic and Prediabetic Nonobese Diabetic Mice

期刊

PLOS ONE
卷 5, 期 7, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0011848

关键词

-

资金

  1. Juvenile Diabetes Research Foundation [7-2005-1154]
  2. National Institutes of Health (NIH) [F30 DK082217]

向作者/读者索取更多资源

Background: We and others have previously demonstrated that treatment with bone marrow derived DC genetically modified to express IL-4 reduce disease pathology in mouse models of collagen-induced arthritis and delayed-type hypersensitivity. Moreover, treatment of normoglycemic NOD mice with bone marrow derived DC, genetically modified to express interleukin 4 (IL-4), reduces the onset of hyperglycemia in a significant number of animals. However, the mechanism(s) through which DC expressing IL-4 function to prevent autoimmune diabetes and whether this treatment can reverse disease in pre-diabetic NOD mice are unknown. Methodology/Principal Findings: DC were generated from the bone marrow of NOD mice and transduced with adenoviral vectors encoding soluble murine IL-4 (DC/sIL-4), a membrane-bound IL-4 construct, or empty vector control. Female NOD mice were segregated into normoglycemic (<150mg/dL) and prediabetic groups (between 150 and 250 mg/dL) on the basis of blood glucose measurements, and randomized for adoptive transfer of 10(6) DC via a single i.v. injection. A single injection of DC/sIL-4, when administered to normoglycemic 12-week old NOD mice, significantly reduced the number of mice that developed diabetes. Furthermore, DC/sIL-4, but not control DC, decreased the number of mice progressing to diabetes when given to prediabetic NOD mice 12-16 weeks of age. DC/sIL-4 treatment also significantly reduced islet mononuclear infiltration and increased the expression of FoxP3 in the pancreatic lymph nodes of a subset of treated animals. Furthermore, DC/sIL-4 treatment altered the antigen-specific Th2:Th1 cytokine profiles as determined by ELISPOT of splenocytes in treated animals. Conclusions: Adoptive transfer of DC transduced to express IL-4 into both normoglycemic and prediabetic NOD mice is an effective treatment for T1D.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据