4.6 Article

ICP0 Dismantles Microtubule Networks in Herpes Simplex Virus-Infected Cells

期刊

PLOS ONE
卷 5, 期 6, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0010975

关键词

-

资金

  1. Central Research and Excellence in Academic Medicine Committees of the Southern Illinois University School of Medicine
  2. National Institutes of Health [R01 AI51414, R21 AI081072]

向作者/读者索取更多资源

Infected-cell protein 0 (ICP0) is a RING finger E3 ligase that regulates herpes simplex virus (HSV) mRNA synthesis, and strongly influences the balance between latency and replication of HSV. For 25 years, the nuclear functions of ICP0 have been the subject of intense scrutiny. To obtain new clues about ICP0's mechanism of action, we constructed HSV-1 viruses that expressed GFP-tagged ICP0. To our surprise, both GFP-tagged and wild-type ICP0 were predominantly observed in the cytoplasm of HSV-infected cells. Although ICP0 is exclusively nuclear during the immediate-early phase of HSV infection, further analysis revealed that ICP0 translocated to the cytoplasm during the early phase where it triggered a previously unrecognized process; ICP0 dismantled the microtubule network of the host cell. A RING finger mutant of ICP0 efficiently bundled microtubules, but failed to disperse microtubule bundles. Synthesis of ICP0 proved to be necessary and sufficient to disrupt microtubule networks in HSV-infected and transfected cells. Plant and animal viruses encode many proteins that reorganize microtubules. However, this is the first report of a viral E3 ligase that regulates microtubule stability. Intriguingly, several cellular E3 ligases orchestrate microtubule disassembly and reassembly during mitosis. Our results suggest that ICP0 serves a dual role in the HSV life cycle, acting first as a nuclear regulator of viral mRNA synthesis and acting later, in the cytoplasm, to dismantle the host cell's microtubule network in preparation for virion synthesis and/or egress.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据