4.6 Article

Human Keratinocytes Are Vanilloid Resistant

期刊

PLOS ONE
卷 3, 期 10, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0003419

关键词

-

资金

  1. Hungarian Ministry of Health [552/2006]
  2. National Office for Research and Technology [OM-00051/2005, OMFB-01575/2006, OMFB-01576/2006, OMFB-01630/2006]
  3. Anyos Jedlik Program [NKFP-1-00019/2005, GVOP-3.3.1-05/1.-2005-05-0057/3.0]
  4. Zoltan Magyary Postdoctoral Fellowship Fund
  5. Hungarian Academy of Sciences [Janos Bolyai Research Scholarship]
  6. [MC-IRG030854-PAINKILLER]

向作者/读者索取更多资源

Background: Use of capsaicin or resiniferatoxin (RTX) as analgesics is an attractive therapeutic option. RTX opens the cation channel inflammatory pain/vanilloid receptor type 1 (TRPV1) permanently and selectively removes nociceptive neurons by Ca2+-cytotoxicity. Paradoxically, not only nociceptors, but non-neuronal cells, including keratinocytes express full length TRPV1 mRNA, while patient dogs and experimental animals that underwent topical treatment or anatomically targeted molecular surgery have shown neither obvious behavioral, nor pathological side effects. Methods: To address this paradox, we assessed the vanilloid sensitivity of the HaCaT human keratinocyte cell line and primary keratinocytes from skin biopsies. Results: Although both cell types express TRPV1 mRNA, neither responded to vanilloids with Ca2+-cytotoxicity. Only ectopic overproduction of TRPV1 rendered HaCaT cells sensitive to low doses (1-50 nM) of vanilloids. The TRPV1-mediated and nonreceptor specific Ca2+-cytotoxity ([RTX] > 15 mu M) could clearly be distinguished, thus keratinocytes were indeed resistant to vanilloid-induced, TRPV1-mediated Ca2+-entry. Having a wider therapeutic window than capsaicin, RTX was effective in subnanomolar range, but even micromolar concentrations could not kill human keratinocytes. Keratinocytes showed orders of magnitudes lower TRPV1 mRNA level than sensory ganglions, the bona fide therapeutic targets in human pain management. In addition to TRPV1, TRPV1b, a dominant negative splice variant was also noted in keratinocytes. Conclusion: TRPV1B expression, together with low TRPV1 expression, may explain the vanilloid paradox: even genuinely TRPV1 mRNA positive cells can be spared with therapeutic (up to micromolar) doses of RTX. This additional safety information might be useful for planning future human clinical trials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据