4.4 Article

Refractive-Index Sensing with Ultrathin Plasmonic Nanotubes

期刊

PLASMONICS
卷 8, 期 2, 页码 193-199

出版社

SPRINGER
DOI: 10.1007/s11468-012-9375-z

关键词

Refractive-index sensing; Nanoplasmonics; Hydrodynamic Drude model

向作者/读者索取更多资源

We study the refractive-index sensing properties of plasmonic nanotubes with a dielectric core and ultrathin metal shell. The few nanometer thin metal shell is described by both the usual Drude model and the nonlocal hydrodynamic model to investigate the effects of nonlocality. We derive an analytical expression for the extinction cross section and show how sensing of the refractive index of the surrounding medium and the figure of merit are affected by the shape and size of the nanotubes. Comparison with other localized surface plasmon resonance sensors reveals that the nanotube exhibits superior sensitivity and comparable figure of merit.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Chemistry, Multidisciplinary

Nanoscale View of Engineered Massive Dirac Quasiparticles in Lithographic Superstructures

Alfred J. H. Jones, Lene Gammelgaard, Mikkel O. Sauer, Deepnarayan Biswas, Roland J. Koch, Chris Jozwiak, Eli Rotenberg, Aaron Bostwick, Kenji Watanabe, Takashi Taniguchi, Cory R. . Dean, Antti-Pekka Jauho, Peter Boggild, Thomas G. Pedersen, Bjarke S. Jessen, Soren Ulstrup

Summary: This work demonstrates the controllable induction of massive Dirac fermions in a graphene device by lithographically patterning superstructures of nanoscale holes. The band dispersion of these fermions is visualized using angle-resolved photoemission spectroscopy with nanoscale spatial resolution, showing a linear scaling of effective mass with feature sizes. Electrostatic doping enhances the effective hole mass and leads to the observation of an electronic band gap, which is strongly renormalized by carrier-induced screening. This methodology allows for the engineering of band structures of massive Dirac quasiparticles at the nanoscale.

ACS NANO (2022)

Article Optics

Spectral Tuning, Stabilities under External Exposures, and Spontaneous Enhancement of Emission Intensity in Grown-into-Glass All-Inorganic Metal Halide Perovskite Nanocrystals

Fengwen Kang, Yongping Du, Ze Yang, Philippe Boutinaud, Martijn Wubs, Jie Xu, Haiyan Ou, Dongzhe Li, Kaibo Zheng, Abebe T. Tarekegne, Guohuan Sun, Xuhui Xu, Sanshui Xiao

Summary: In this study, CsPbBr3:Ln(3+) nanocrystals grown into glass were successfully designed and fabricated using an in situ nanocrystallization method. It was found that substitution of Pb2+ sites with Ln(3+) ions led to a blueshift of emission position. The nanocrystals exhibited excellent photoluminescent properties and showed good stability in various environments. Additionally, the emission intensity could be controlled through heat-cooling experiments and laser irradiation. Furthermore, a white light-emitting prototype was achieved by combining the CsPbBr3 nanocrystals with other phosphors.

LASER & PHOTONICS REVIEWS (2023)

Article Chemistry, Multidisciplinary

Purifying single photon emission from giant shell CdSe/CdS quantum dots at room temperature

Sergii Morozov, Stefano Vezzoli, Alina Myslovska, Alessio Di Giacomo, N. Asger Mortensen, Iwan Moreels, Riccardo Sapienza

Summary: Giant shell CdSe/CdS quantum dots exhibit high brightness and flexibility, with near-unity quantum yield and suppressed blinking. However, their single photon purity is reduced due to efficient multiexcitonic emission. In this study, we observed a significant blueshift in the photoluminescence biexciton spectrum of pure-phase wurtzite quantum dots. By using spectral filtering, we achieved a 2.3 times reduction in biexciton quantum yield while preserving 60% of the exciton single photon emission, leading to an improvement in purity from g2(0)=0.07±0.01 to g2(0)=0.03±0.01. Furthermore, at higher pump fluence, the spectral purification was even more effective, resulting in up to a 6.6 times reduction in g2(0) by suppressing higher order excitons and shell states with larger blueshifts.

NANOSCALE (2023)

Article Chemistry, Multidisciplinary

Quantum Optical Effective-Medium Theory for Layered Metamaterials at Any Angle of Incidence

Ehsan Amooghorban, Martijn Wubs

Summary: The study of quantum optics in metamaterials questions the applicability of classical effective-medium theories. In general, an additional effective parameter, the effective noise-photon distribution, is indispensable for active plasmonics and some passive metamaterials to predict the preservation of quantumness of light states in the metamaterial. The dependence of the effective noise-photon distribution on polarization and propagation directions is derived for both passive and active media, illustrating the robustness of the quantum optical effective-medium theory.

NANOMATERIALS (2023)

Article Nanoscience & Nanotechnology

Observation of multiple bulk bound states in the continuum modes in a photonic crystal cavity

Rui Chen, Yi Zheng, Xingyu Huang, Qiaoling Lin, Chaochao Ye, Meng Xiong, Martijn Wubs, Yungui Ma, Minhao Pu, Sanshui Xiao

Summary: Obtaining bound states in the continuum (BICs) in photonic crystals allows for resonances with high quality factors for lasing and nonlinear applications. We design photonic-crystal BIC cavities encircled by the photonic bandgap of lateral heterostructures to confine the mode profile and suppress side leakage. Multiple bulk quantized modes are observed in both simulation and experiment, with resonance peaks depending on the illuminating position explained by mode profile distribution analysis and numerical simulations. Our findings have potential applications in mode selectivity for BIC devices and manipulation of lasing modes or radiation patterns in photonic-crystal surface-emitting lasers or nonlinear optics.

BEILSTEIN JOURNAL OF NANOTECHNOLOGY (2023)

Article Materials Science, Multidisciplinary

Gallium Phosphide Nanoparticles for Low-Loss Nanoantennas in Visible Range

Daisuke Shima, Hiroshi Sugimoto, Artyom Assadillayev, Soren Raza, Minoru Fujii

Summary: In this study, colloidal nanoparticles of gallium phosphide (GaP) with high refractive index and low extinction coefficient in the visible range were prepared using mechanical milling and pulsed laser melting. The process resulted in spherical GaP nanoparticles with a smooth surface. The scattering spectroscopy revealed distinctive Mie resonances of dipolar and higher-order modes in the visible range, which were achieved by smoothening the surface through the pulsed laser melting process. Electron energy loss spectroscopy confirmed the presence of the magnetic dipole mode at the Mie resonances. Finally, the Purcell enhancement of fluorescence on the nanoparticle surface due to the Mie resonances was demonstrated.

ADVANCED OPTICAL MATERIALS (2023)

Article Nanoscience & Nanotechnology

Nonlinear Photoluminescence in Gold Thin Films

Alvaro Rodriguez Echarri, Fadil Iyikanat, Sergejs Boroviks, N. Asger Mortensen, Joel D. Cox, F. Javier Garcia de Abajo

Summary: The promising applications of photonics rely on the fabrication of high-quality metal thin films with controlled thickness in the range of a few nanometers. These materials exhibit highly nonlinear response to optical fields due to ultrafast electron dynamics. However, the understanding of this phenomenon on such small length scales is limited. In this study, a new mechanism controlling the nonlinear optical response of thin metallic films is revealed, which is dominated by ultrafast electronic heat transport when the film thickness is sufficiently small. By experimentally and theoretically studying electronic transport in these materials, the researchers explained the observed temporal evolution of photoluminescence in two-pulse correlation measurements. They found that ultrafast thermal dynamics plays a crucial role in determining the strength and time-dependent characteristics of the nonlinear photoluminescence signal. Their findings provide new insights into the nonlinear optical response of nanoscale materials and offer possibilities for controlling and utilizing hot carrier distributions in metallic films.

ACS PHOTONICS (2023)

Article Materials Science, Multidisciplinary

Photon superbunching in cathodoluminescence of excitons in WS2 monolayer

Saskia Fiedler, Sergii Morozov, Leonid Iliushyn, Sergejs Boroviks, Martin Thomaschewski, Jianfang Wang, Timothy J. Booth, Nicolas Stenger, Christian Wolff, N. Asger Mortensen

Summary: Cathodoluminescence spectroscopy combined with second-order auto-correlation measurements of g(2)(tau) allows for extensive study of the synchronization of photon emitters in low-dimensional structures. Co-existing excitons in two-dimensional transition metal dichalcogenide monolayers serve as a great source of identical photon emitters that can be simultaneously excited by an electron. In this study, we demonstrate large photon bunching with g(2)(0) up to 156 +/- 16 in a tungsten disulfide monolayer (WS2), showing a strong dependence on the electron-beam current. By carefully selecting a simple and compact geometry, such as a thin monocrystalline gold nanodisk, we achieve a record-high bunching g(2)(0) of up to 2152 +/- 236, improving the excitation synchronization and electron-emitter interaction. This approach of controlling electron excitation of excitons in a WS2 monolayer enables the synchronization of photon emitters in an ensemble, which is crucial for advancing light information and computing technologies.

2D MATERIALS (2023)

Article Chemistry, Multidisciplinary

Combining experiments on luminescent centres in hexagonal boron nitride with the polaron model and ab initio methods towards the identification of their microscopic origin

Moritz Fischer, Ali Sajid, Jake Iles-Smith, Alexander Hoetger, Denys I. Miakota, Mark K. Svendsen, Christoph Kastl, Stela Canulescu, Sanshui Xiao, Martijn Wubs, Kristian S. Thygesen, Alexander W. Holleitner, Nicolas Stenger

Summary: By combining theory and experiments, we have identified three carbon-based defects as the microscopic origin of luminescent centers in hBN. We have also developed a method to calculate photoluminescence excitation (PLE) maps, which accurately describe the vibronic structure of the optical transition and the phonon-assisted excitation mechanism.

NANOSCALE (2023)

Article Nanoscience & Nanotechnology

Sub-to-super-Poissonian photon statistics in cathodoluminescence of color center ensembles in isolated diamond crystals

Saskia Fiedler, Sergii Morozov, Danylo Komisar, Evgeny A. A. Ekimov, Liudmila F. F. Kulikova, Valery A. A. Davydov, Viatcheslav N. N. Agafonov, Shailesh Kumar, Christian Wolff, Sergey I. I. Bozhevolnyi, N. Asger Mortensen

Summary: Impurity-vacancy centers in diamond provide a class of robust photon sources with versatile quantum properties. The ensembles of color centers have tunable photon-emission statistics and their emission properties can be controlled by different types of excitation. Electron-beam excitation can synchronize the emitters' excitation and control the second-order correlation function g(2)(0), as confirmed by experimental results in this letter. Such a photon source based on an ensemble of few color centers in a diamond crystal offers a highly tunable platform for room temperature informational technologies.

NANOPHOTONICS (2023)

Article Optics

Gain-compensated cavities for the dynamic control of light-matter interactions

Christos Tserkezis, Christian Wolff, Fedor A. Shuklin, Francesco Todisco, Mikkel H. Eriksen, P. A. D. Goncalves, N. Asger Mortensen

Summary: We propose an efficient approach for actively controlling the Rabi oscillations in nanophotonic emitter-cavity analogs based on the presence of an element with optical gain. Inspired by recent developments in parity-time (PT)-symmetry photonics, we show that nano-or microcavities where intrinsic losses are partially or fully compensated by an externally controllable amount of gain offer unique capabilities for manipulating the dynamics of extended (collective) excitonic emitter systems. Furthermore, we show that there is a specific gain value that leads to an exceptional point, where both the emitter and cavity occupation oscillate practically in phase, with occupation numbers that can significantly exceed unity.

PHYSICAL REVIEW A (2023)

Article Materials Science, Multidisciplinary

Anomalous Josephson current through a driven double quantum dot

Carlos Ortega-Taberner, Antti-Pekka Jauho, Jens Paaske

Summary: Josephson junction based on quantum dots with local gates offers convenient tunability. In this study, a Josephson junction based on a serial double quantum dot gated by phase-shifted microwave tones is analyzed. The current-phase relation of the junction is modified by the phase shift between the drives. Breaking particle-hole symmetry on the dots results in a finite average anomalous Josephson current with zero phase bias. This microwave gated weak link realizes a tunable Floquet v0 junction with maximum critical current achieved slightly off resonance with the subgap excitation energy.

PHYSICAL REVIEW B (2023)

Article Materials Science, Multidisciplinary

Halevi?s extension of the Euler-Drude model for plasmonic systems

Gino Wegner, Dan-Nha Huynh, N. Asger Mortensen, Francesco Intravaia, Kurt Busch

Summary: The paper discusses the impact of an extended model proposed by Halevi on the nonlocal response of plasmonic materials and nanostructures. It reevaluates the Mie scattering coefficients for a cylinder and corresponding plasmon-polariton resonances within this framework. The analysis reveals a nonlocal, collisional, and size-dependent damping term that affects the resonances in the extinction spectrum. The implementation of the Halevi model in the time domain is particularly important for efficient and accurate modeling of nanogap structures and other nanoscale features in nanoplasmonics applications.

PHYSICAL REVIEW B (2023)

Article Chemistry, Multidisciplinary

Reconfigurable chirality with achiral excitonic materials in the strong-coupling regime

P. Elli Stamatopoulou, Sotiris Droulias, Guillermo P. Acuna, N. Asger Mortensen, Christos Tserkezis

Summary: This paper introduces and analyzes the concept of manipulating optical chirality by strongly coupling the optical modes of chiral nanostructures with excitonic transitions in molecular layers or semiconductors. By demonstrating the generation of two spectral branches that retain the object's high chirality density through strong coupling with a nearby excitonic material, the authors propose that post-fabrication manipulation of optical chirality can be achieved. These findings are further verified through simulations of circular dichroism in a realistic chiral architecture.

NANOSCALE (2022)

Article Optics

Fundamental issues with light propagation through PT-symmetric systems

F. A. Shuklin, C. Tserkezis, N. Asger Mortensen, C. Wolff

Summary: This study analyzes the emergence of unphysical superluminal group velocities in Su-Schrieffer-Heeger (SSH) parity-time (PT) symmetric chains and explores the origins of this behavior. The analysis reveals that material dispersion is the key factor causing the divergence of group velocities. Restoring causality resolves the issue and sets practical limits on the performance of PT-symmetric systems.

PHYSICAL REVIEW A (2022)

暂无数据