4.5 Article

Evaluation of In Vitro Absorption, Distribution, Metabolism, and Excretion (ADME) Properties of Mitragynine, 7-Hydroxymitragynine, and Mitraphylline

期刊

PLANTA MEDICA
卷 80, 期 7, 页码 568-576

出版社

GEORG THIEME VERLAG KG
DOI: 10.1055/s-0034-1368444

关键词

Mitragyna speciosa; Uncaria tomentosa; Rubiaceae; intestinal transport; blood brain barrier; P-gp

资金

  1. United States Department of Agriculture, Agricultural Research Service [58-6408-1-603]
  2. FDA Science Based Authentication of Dietary Supplements [1 U01 FD004246-02]

向作者/读者索取更多资源

Mitragyna speciosa (kratom) is a popular herb in Southeast Asia, which is traditionally used to treat withdrawal symptoms associated with opiate addiction. Mitragynine, 7-hydroxymitragynine, and mitraphylline are reported to be the central nervous system active alkaloids which bind to the opiate receptors. Mitraphylline is also present in the bark of Uncaria tomentosa (cats claw). Several therapeutic properties have been reported for these compounds but limited information is available on the absorption and distribution properties. This study focuses on evaluating the absorption, distribution, metabolism, and excretion (ADME) properties of these compounds and their effect on major efflux transporter P-glycoprotein, using in vitro methods. Quantitative analysis was performed by the Q-TOF LC-MS system. Mitragynine was unstable in simulated gastric fluid with 26% degradation but stable in simulated intestinal fluid. 7-Hydroxymitragynine degraded up to 27% in simulated gastric fluid, which could account for its conversion to mitragynine (23%), while only 6% degradation was seen in simulated intestinal fluid. Mitraphylline was stable in simulated gastric fluid but unstable in simulated intestinal fluid (13.6% degradation). Mitragynine and 7-hydroxymitragynine showed moderate permeability across Caco-2 and MDR-MDCK monolayers with no significant efflux. However, mitraphylline was subjected to efflux mediated by P-glycoprotein in both Caco-2 and MDR-MDCK monolayers. Mitragynine was found to be metabolically stable in both human liver microsomes and S9 fractions. In contrast, both 7-hydroxymitragynine and mitraphylline were metabolized by human liver microsomes with half-lives of 24 and 50 min, respectively. All three compounds exhibited high plasma protein binding (>90%) determined by equilibrium dialysis. Mitragynine and 7-hydroxymitragynine inhibited P-glycoprotein with EC50 values of 18.2 +/- 3.6 mu M and 32.4 +/- 1.9 mu M, respectively, determined by the calcein-AM fluorescent assay, while no inhibition was seen with mitraphylline. These data indicate the possibility of a drug interaction if mitragynine and 7-hydroxymitragynine are coadministered with drugs that are P-glycoprotein substrates.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据