4.7 Article

Molecular characterization of a cDNA encoding DRE-binding transcription factor from dehydration-treated fibrous roots of sweetpotato

期刊

PLANT PHYSIOLOGY AND BIOCHEMISTRY
卷 46, 期 2, 页码 196-204

出版社

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.plaphy.2007.09.012

关键词

abscisic acid; dehydration; DREB; fibrous root; sweetpotato

向作者/读者索取更多资源

A new dehydration responsive element-binding (DREB) protein gene encoding for an AP2/EREBP-type transcription factor was isolated by screening of the cDNA library for dehydration-treated fibrous roots of sweetpotato (Ipomoea batatas). Its cDNA (referred to as swDREB1) fragment of 1206 bp was sequenced from, which a 257 amino acid residue protein was deduced with a predicted molecular weight of 28.17 kDa. A search of the protein BLAST database revealed that this protein can be classified as a typical member of a DREB subfamily. RT-PCR and northern analyses revealed diverse expression patterns of the swDREB1 gene in various tissues of intact sweetpotato plant, and in leaves and fibrous roots exposed to different stresses. The swDREB1 gene was highly expressed in stems and tuberous roots. In fibrous roots, its mRNA accumulation profiles clearly showed strong expression under various abiotic stress conditions such as dehydration, chilling, salt, methyl viologen (MV), and cadmium (Cd) treatment, whereas it did not respond to abscisic acid (ABA) or copper (Cu) treatment. The above results indicate that swDREB1 may be involved in the process of the plant response to diverse abiotic stresses through an ABA-independent pathway. (c) 2007 Elsevier Masson SAS. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据