4.8 Article

Abundant Type III Lipid Transfer Proteins in Arabidopsis Tapetum Are Secreted to the Locule and Become a Constituent of the Pollen Exine

期刊

PLANT PHYSIOLOGY
卷 163, 期 3, 页码 1218-1229

出版社

AMER SOC PLANT BIOLOGISTS
DOI: 10.1104/pp.113.225706

关键词

-

资金

  1. Institute of Plant and Microbial Biology, Academia Sinica
  2. National Science Council of Taiwan [NSC101-2311-B-001-034]
  3. U.S. Department of Agriculture National Research Initiative

向作者/读者索取更多资源

Lipid transfer proteins (LTPs) are small secretory proteins in plants with defined lipid-binding structures for possible lipid exocytosis. Special groups of LTPs unique to the anther tapetum are abundant, but their functions are unclear. We studied a special group of LTPs, type III LTPs, in Arabidopsis (Arabidopsis thaliana). Their transcripts were restricted to the anther tapetum, with levels peaking at the developmental stage of maximal pollen-wall exine synthesis. We constructed an LTP-Green Fluorescent Protein (LTP-GFP) plasmid, transformed it into wild-type plants, and monitored LTP-GFP in developing anthers with confocal laser scanning microscopy. LTP-GFP appeared in the tapetum and was secreted via the endoplasmic reticulum-trans-Golgi network machinery into the locule. It then moved to the microspore surface and remained as a component of exine. Immuno-transmission electron microscopy of native LTP in anthers confirmed the LTP-GFP observations. The in vivo association of LTP-GFP and exine in anthers was not observed with non-type III or structurally modified type III LTPs or in transformed exine-defective mutant plants. RNA interference knockdown of individual type III LTPs produced no observable mutant phenotypes. RNA interference knockdown of two type III LTPs produced microscopy-observable morphologic changes in the intine underneath the exine (presumably as a consequence of changes in the exine not observed by transmission electron microscopy) and pollen susceptible to dehydration damage. Overall, we reveal a novel transfer pathway of LTPs in which LTPs bound or nonbound to exine precursors are secreted from the tapetum to become microspore exine constituents; this pathway explains the need for plentiful LTPs to incorporate into the abundant exine.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据