4.8 Article

Phosphate Regulation of Lipid Biosynthesis in Arabidopsis Is Independent of the Mitochondrial Outer Membrane DGS1 Complex

期刊

PLANT PHYSIOLOGY
卷 152, 期 4, 页码 1951-1959

出版社

AMER SOC PLANT BIOLOGISTS
DOI: 10.1104/pp.110.153262

关键词

-

资金

  1. U.S. Department of Energy
  2. Office of Basic Energy Sciences [DE-FG02-07ER20305]
  3. Michigan Agriculture Experiment Station

向作者/读者索取更多资源

Galactoglycerolipids are major constituents of photosynthetic membranes in chloroplasts. At least three parallel sets of enzymes are involved in their biosynthesis that must be coordinated in response to changing growth conditions. A potential candidate for a protein affecting the activity of different galactoglycerolipid pathways is the recently described digalactosyldiacylglycerol1 (dgd1) SUPPRESSOR1 (DGS1) protein of Arabidopsis (Arabidopsis thaliana) localized in the mitochondrial outer membrane. It was discovered based on a specific gain-of-function point mutation allele, dgs1-1, that causes a partial restoration of chloroplast galactoglycerolipid deficiency in the dgd1 mutant, which is defective in the lipid galactosyltransferase, DGD1. The dgs1-1 allele causes the accumulation of hydrogen peroxide that leads to an activation of an alternative, DGD1-independent galactoglycerolipid biosynthesis pathway in chloroplasts. Analysis presented here shows that the DGS1 protein is a component of a large protein complex, which explains the previously observed dominant negative phenotype following the expression of the dgs1-1 allele. The dgs1-1 allele causes the loss of mitochondrial alternative oxidase (AOX) protein that might be related to the accumulation of hydrogen peroxide in the dgs1-1 mutant background. This effect was posttranscriptional because mRNA levels for the major form of AOX were not affected in dgs1-1 mutant seedlings. Unlike dgs1-1, a loss-of-function allele, dgs1-2, had no effect on plant growth, AOX, and lipid composition to the extent tested, leaving the quest for a possible molecular function of DGS1 open. Apparently, the DGS1 wild-type protein does not directly affect lipid metabolism in mitochondria or chloroplasts.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据