4.8 Article

Plant Physiological Adaptations to the Massive Foreign Protein Synthesis Occurring in Recombinant Chloroplasts

期刊

PLANT PHYSIOLOGY
卷 150, 期 3, 页码 1474-1481

出版社

AMER SOC PLANT BIOLOGISTS
DOI: 10.1104/pp.109.139816

关键词

-

资金

  1. French Ministry of Industry

向作者/读者索取更多资源

Genetically engineered chloroplasts have an extraordinary capacity to accumulate recombinant proteins. We have investigated in tobacco (Nicotiana tabacum) the possible consequences of such additional products on several parameters of plant development and composition. Plastid transformants were analyzed that express abundantly either bacterial enzymes, alkaline phosphatase (PhoA-S and PhoA-L) and 4-hydroxyphenyl pyruvate dioxygenase (HPPD), or a green fluorescent protein (GFP). In leaves, the HPPD and GFP recombinant proteins are the major polypeptides and accumulate to higher levels than Rubisco. Nevertheless, these engineered metabolic sinks do not cause a measurable difference in growth rate or photosynthetic parameters. The total amino acid content of transgenic leaves is also not significantly affected, showing that plant cells have a limited protein biosynthetic capacity. Recombinant products are made at the expense of resident proteins. Rubisco, which constitutes the major leaf amino acid store, is the most clearly and strongly down-regulated plant protein. This reduction is even more dramatic under conditions of limited nitrogen supply, whereas recombinant proteins accumulate to even higher relative levels. These changes are regulated posttranscriptionally since transcript levels of resident plastid genes are not affected. Our results show that plants are able to produce massive amounts of recombinant proteins in chloroplasts without profound metabolic perturbation and that Rubisco, acting as a nitrogen buffer, is a key player in maintaining homeostasis and limiting pleiotropic effects.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据