4.8 Article

The widespread plant-colonizing bacterial species Pseudomonas syringae detects and exploits an extracellular pool of choline in hosts

期刊

PLANT JOURNAL
卷 75, 期 6, 页码 891-902

出版社

WILEY
DOI: 10.1111/tpj.12262

关键词

Choline; Pseudomonas syringae; osmoprotectant; plant host; Phaseolus vulgaris; Glycine max; colonization; survival; whole-cell bioreporter; quaternary ammonium compound (QAC)

资金

  1. National Science Foundation [MCB-0920156]
  2. Direct For Biological Sciences
  3. Div Of Molecular and Cellular Bioscience [0920156] Funding Source: National Science Foundation

向作者/读者索取更多资源

The quaternary ammonium compound (QAC) choline is a major component of membrane lipids in eukaryotes and, if available to microbial colonists of plants, could provide benefits for growth and protection from stress. Free choline is found in homogenized plant tissues, but its subcellular location and availability to plant microbes are not known. Whole-cell bacterial bioreporters of the phytopathogen Pseudomonas syringae were constructed that couple a QAC-responsive transcriptional fusion with well-characterized bacterial QAC transporters. These bioreporters demonstrated the presence of abundant free choline compounds released from germinating seeds and seedlings of the bean Phaseolus vulgaris, and a smaller but consistently detectable amount of QACs, probably choline, from leaves. The localization of P.syringae bioreporter cells to the surface and intercellular sites of plant tissues demonstrated the extracellular location of these QAC pools. Moreover, P.syringae mutants that were deficient in the uptake of choline compounds exhibited reduced fitness on leaves, highlighting the importance of extracellular choline to P.syringae on leaves. Our data support a model in which this choline pool is derived from the phospholipid phosphatidylcholine through plant-encoded phospholipases that release choline into the intercellular spaces of plant tissues, such as for membrane lipid recycling. The consequent extracellular release of choline compounds enables their interception and exploitation by plant-associated microbes, and thus provides a selective advantage for microbes such as P.syringae that are adapted to maximally exploit choline.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据