4.6 Article

Comparison of starch accumulation and enzyme activity in grains of wheat cultivars differing in kernel type

期刊

PLANT GROWTH REGULATION
卷 57, 期 2, 页码 153-162

出版社

SPRINGER
DOI: 10.1007/s10725-008-9331-2

关键词

Wheat (Triticum aestivum L.); Kernel type; Irrigation; Sucrose synthase; ADP-glucose pyrophosphorylase; Starch synthase; Starch branching enzyme

资金

  1. National Natural Science Foundation of China [30270781, 30571099]
  2. National Basic Research Program of China [2009CB118602]
  3. Scientific Research Fund of Dezhou College [07rc009]

向作者/读者索取更多资源

It is generally accepted that sucrose synthase (SuSy), ADP-glucose pyrophosphorylase (AGPase), soluble starch synthase (SSS), granule-bound starch synthases (GBSS) and starch branching enzyme (SBE) play a key role in starch synthesis in wheat grains. Starch synthesis in wheat grains is influenced by genotype and environment. However, what is not known is the degree of variation in enzyme activity during starch accumulation of wheat cultivars differing in kernel types. The present study was carried out to characterize the changing activities of key enzymes during grain filling in two kernel type winter wheat cultivars. Results showed that starch accumulation rate (SAR) and activities of SuSy, AGPase, SSS, GBSS and SBE in large kernel types were significantly higher than those in small kernel types. The soil water deficit experienced during the course of the experiment led to an increase at early grain-filling period and decrease during late grain-filling, respectively, in SAR and activities of key enzymes involved in starch synthesis, especially SuSy, AGPase, SSS, and SBE. Water deficit enhanced grain starch accumulation in small kernel types. It suggests that rainfed treatment increase physiological activities during early grain-filling and promote starch accumulation in small kernel types. The simulation with Richards' equation showed that it was accumulation duration and SAR that determined the starch accumulation in large kernel types. Compared with small kernel types, plants of large kernel types maintained longer filling duration, higher SAR and greater activities of related enzymes during mid and late grain-filling. These observations suggest stronger sink activities in large kernel types at a later stage of development. Consequently, large kernel types have advantages over the small kernel types in terms of the amount of starch accumulation at mid and late stage, but are sensitive to water deficit.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据