4.8 Article

Arabidopsis and Maize RidA Proteins Preempt Reactive Enamine/Imine Damage to Branched-Chain Amino Acid Biosynthesis in Plastids

期刊

PLANT CELL
卷 26, 期 7, 页码 3010-3022

出版社

AMER SOC PLANT BIOLOGISTS
DOI: 10.1105/tpc.114.126854

关键词

-

资金

  1. U.S. National Science Foundation [MCB-1153413, IOS-1025398, MCB-1153491]
  2. National Sciences and Engineering Research Council of Canada [217291]
  3. C.V. Griffin Sr. Foundation
  4. Direct For Biological Sciences [1153491] Funding Source: National Science Foundation
  5. Direct For Biological Sciences
  6. Div Of Molecular and Cellular Bioscience [1153413] Funding Source: National Science Foundation
  7. Division Of Integrative Organismal Systems
  8. Direct For Biological Sciences [1025398] Funding Source: National Science Foundation
  9. Div Of Molecular and Cellular Bioscience [1153491] Funding Source: National Science Foundation

向作者/读者索取更多资源

RidA (for Reactive Intermediate Deaminase A) proteins are ubiquitous, yet their function in eukaryotes is unclear. It is known that deleting Salmonella enterica ridA causes Ser sensitivity and that S. enterica RidA and its homologs from other organisms hydrolyze the enamine/imine intermediates that Thr dehydratase forms from Ser or Thr. In S. enterica, the Ser-derived enamine/imine inactivates a branched-chain aminotransferase; RidA prevents this damage. Arabidopsis thaliana and maize (Zea mays) have a RidA homolog that is predicted to be plastidial. Expression of either homolog complemented the Ser sensitivity of the S. enterica ridA mutant. The purified proteins hydrolyzed the enamines/imines formed by Thr dehydratase from Ser or Thr and protected the Arabidopsis plastidial branched-chain aminotransferase BCAT3 from inactivation by the Ser-derived enamine/imine. In vitro chloroplast import assays and in vivo localization of green fluorescent protein fusions showed that Arabidopsis RidA and Thr dehydratase are chloroplast targeted. Disrupting Arabidopsis RidA reduced root growth and raised the root and shoot levels of the branched-chain amino acid biosynthesis intermediate 2-oxobutanoate; Ser treatment exacerbated these effects in roots. Supplying Ile reversed the root growth defect. These results indicate that plastidial RidA proteins can preempt damage to BCAT3 and Ile biosynthesis by hydrolyzing the Ser-derived enamine/imine product of Thr dehydratase.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据