4.7 Article

Determination of isoprene and alpha-/beta-pinene oxidation products in boreal forest aerosols from Hyytiala, Finland: diel variations and possible link with particle formation events

期刊

PLANT BIOLOGY
卷 10, 期 1, 页码 138-149

出版社

WILEY
DOI: 10.1055/s-2007-964945

关键词

secondary organic aerosol; isoprene; alpha-pinene; photo-oxidation; acidity; condensation sink

向作者/读者索取更多资源

Biogenic volatile organic compounds (VOCs), such as isoprene and alpha-/beta-pinene, are photo-oxidized in the atmosphere to non-volatile species resulting in secondary organic aerosol (SOA). The goal of this study was to examine time trends and diel variations of oxidation products of isoprene and alpha-/beta-pinene in order to investigate whether they are linked with meteorological parameters or trace gases. Separate day-night aerosol samples (PM1) were collected in a Scots pine dominated forest in southern Finland during 28 July-11 August 2005 and analyzed with gas chromatography/mass spectrometry (GC/MS). In addition, inorganic trace gases (SO2, CO, NOx, and O-3), meteorological parameters, and the particle number concentration were monitored. The median total concentration of terpenoic acids (i.e., pinic acid, norpinic acid, and two novel compounds, 3-hydroxyglutaric acid and 2-hydroxy-4-isopropyladipic acid) was 65 ng m(-3), while that of isoprene oxidation products (i.e., 2-methyltetrols and C-5 alkene triols) was 17.2 ng m(-3). The 2-methyltetrols exhibited day/night variations with maxima during day-time, while alpha-/beta-pinene oxidation products did not show any diel variation. The sampling period was marked by a relatively high condensation sink, caused by pre-existing aerosol particles, and no nucleation events. In general, the concentration trends of the SOA compounds reflected those of the inorganic trace gases, meteorological parameters, and condensation sink. Both the isoprene and alpha-/beta-pinene SOA products were strongly influenced by SO2, which is consistent with earlier reports that acidity plays a role in SOA formation. The results support previous proposals that oxygenated VOCs contribute to particle growth processes above boreal forest.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据