4.7 Article

Comparative analysis of Cd and Zn impacts on root distribution and morphology of Lolium perenne and Trifolium repens: implications for phytostabilization

期刊

PLANT AND SOIL
卷 376, 期 1-2, 页码 229-244

出版社

SPRINGER
DOI: 10.1007/s11104-013-1975-7

关键词

Heavy metal contamination; Root distribution; Root diameter; Lignin and structural polysaccharides; Lolium perenne; Trifolium repens

向作者/读者索取更多资源

The phytostabilization potential of plants is a direct function of their root systems. An experimental design was developed to investigate the impact of Cd and Zn on the root distribution and morphology of Lolium perenne and Trifolium repens. Seedlings were transplanted into columns filled with washed quartz and irrigated daily with Cd- or Zn-containing nutrient solutions during 1 month. Root biomass, root length density (RLD) and diameter were subsequently quantified as a function of depth. Pot experiments were also performed to quantify metal, lignin and structural polysaccharides concentrations as well as cell viability. Lolium perenne accumulated Cd and Zn in the roots whereas T. repens was unable to restrict heavy metal translocation. Cadmium and Zn reduced rooting depth and RLD but induced thick shoot-borne roots in L. perenne. Cd-induced root swelling was related to lignification occurring in the exodermis and parenchyma of central cylinder. Hemicelluloses and lignin did not play a key role in root metal retention. Cadmium slightly reduced mean root cell viability whereas Zn increased this parameter in comparison to Cd. Even though plant species like Lolium perenne and Trifolium repens may appear suitable for a phytostabilization scheme based on their shoot metal tolerance, exposure to toxic heavy metals drastically impairs their root distribution. This could jeopardize the setting up of phytostabilization trials. The metal-induced alterations of root system properties are clearly metal- and species-specific. At sites polluted with multiple metals, it is therefore recommended to first test their impact on the root system of multiple plant species so as to select the most appropriate species for each site.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据