4.5 Article

Longitudinal system-based analysis of transcriptional responses to type I interferons

期刊

PHYSIOLOGICAL GENOMICS
卷 38, 期 3, 页码 362-371

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/physiolgenomics.00058.2009

关键词

human; T cell; cytokines; gene regulation

资金

  1. National Multiple Sclerosis Society ( NMSS) [RG2901D9/1, CA 1035-A-7]
  2. NMSS

向作者/读者索取更多资源

Pappas DJ, Coppola G, Gabatto PA, Gao F, Geschwind DH, Oksenberg JR, Baranzini SE. Longitudinal system-based analysis of transcriptional responses to type I interferons. Physiol Genomics 38: 362-371, 2009. First published June 16, 2009; doi:10.1152/physiolgenomics.00058.2009.-Type I interferons (IFNs) are pleiotropic cytokines that modulate both innate and adaptive immune responses. They have been used to treat autoimmune disorders, cancers, and viral infection and have been demonstrated to elicit differential responses within cells, despite sharing a single receptor. The molecular basis for such differential responses has remained elusive. To identify the mechanisms underlying differential type I IFN signaling, we used whole genome microarrays to measure longitudinal transcriptional events within human CD4(+) T cells treated with IFN-alpha(2b) or IFN-beta(1a). We identified differentially regulated genes, analyzed them for the enrichment of known promoter elements and pathways, and constructed a network module based on weighted gene coexpression network analysis (WGCNA). WGCNA uses advanced statistical measures to find interconnected modules of correlated genes. Overall, differential responses to IFN in CD4(+) T cells related to three dominant themes: migration, antigen presentation, and the cytotoxic response. For migration, WGCNA identified subtypespecific regulation of pre-mRNA processing factor 4 homolog B and eukaryotic translation initiation factor 4A2, which work at various levels within the cell to affect the expression of the chemokine CCL5. WGCNA also identified sterile alpha-motif domain-containing 9-like (SAMD9L) as critical in subtype-independent effects of IFN treatment. RNA interference of SAMD9L expression enhanced the migratory phenotype of activated T cells treated with IFN-beta compared with controls. Through the analysis of the dynamic transcriptional events after differential IFN treatment, we were able to identify specific signatures and to uncover novel genes that may underpin the type I IFN response.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据