4.2 Article

Phosphorylation Events Catalyzed by Major Cell Signaling Proteins Differ in Response to Thermal and Osmotic Stress among Native (Mytilus californianus and Mytilus trossulus) and Invasive (Mytilus galloprovincialis) Species of Mussels

期刊

PHYSIOLOGICAL AND BIOCHEMICAL ZOOLOGY
卷 83, 期 6, 页码 984-996

出版社

UNIV CHICAGO PRESS
DOI: 10.1086/656192

关键词

-

资金

  1. Partnership for the Interdisciplinary Study of Coastal Oceans (PISCO)
  2. David and Lucile Packard Foundation
  3. Gordon and Betty Moore Foundation
  4. National Science Foundation [IOS-0718734]

向作者/读者索取更多资源

Sharp environmental gradients encountered within the intertidal zone have driven the evolution of physiological adaptations that allow its inhabitants to maintain cellular function in the presence of fluctuating abiotic factors. These adaptations are mediated by gene-regulatory networks that, despite their inherent complexity, must remain evolvable and capable of responding to different selection pressures associated with specific ecological niches. Phosphorylation events catalyzed by cell-signaling enzymes represent a parsimonious mechanism to integrate new functional or regulatory properties into these gene-regulatory networks. In this study, proteins phosphorylated on consensus sequences for protein kinases A, B, and C; cyclin-dependent kinases; and mitogen-activated protein kinases, as well as the abundance of phosphorylated stress-activated protein kinase (phospho-SAPK/JNK), were quantified in order to ascertain whether phosphorylation events are divergent among native (Mytilus californianus and Mytilus trossulus) and invasive (Mytilus galloprovincialis) species of mussels that differ in their tolerance toward environmental stress. Abundances of phosphorylated substrate proteins for each of the major signaling proteins that were investigated, as well as the abundance of phospho-SAPK/JNK, differed both within and between species during thermal and osmotic stress. These data suggest that modulating protein function via phosphorylation may be an important mechanism to integrate novel properties into stress-regulatory networks. In turn, differential phosphorylation during environmental stress may contribute to species-specific tolerances toward abiotic stress, interspecies dynamics, and biogeographic patterns in Mytilus congeners.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据