4.4 Article

Seismicity, seismotectonics and crustal velocity structure of the Messina Strait (Italy)

期刊

PHYSICS OF THE EARTH AND PLANETARY INTERIORS
卷 177, 期 1-2, 页码 65-78

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.pepi.2009.07.010

关键词

Crustal structure; Focal mechanism; Seismicity; Seismotectonics; Tomography

向作者/读者索取更多资源

The Messina Strait is the most important structural element interrupting the southernmost part of the Alpine-Apenninic orogenic belt, known as the Calabro-Peloritan Arc. It is being a narrow fan-shaped basin linking the Ionian Sea to the Tyrrhenian Sea. This region is affected by considerable seismic activity which mirrors the geodynamic processes due to the convergence between the African and the Eurasian plates. In the last four centuries, a significant number of disastrous earthquakes originated along the Arc. Among these, the most noteworthy event occurred on December 28, 1908 (known as the Reggio Calabria-Messina earthquake), in the Messina Strait area and caused a large tsunami and more than 100,000 casualties. In this research we focus on the relationships between the general tectonic setting, which characterize the Messina Strait and adjacent areas, seismicity patterns and the crustal structure. We analyzed a dataset consisting of more than 300 events occurring in the years from 1999 to 2007, having a magnitude range from 1.0 to 3.8. This dataset was exploited in a local earthquake tomography, by carrying out a simultaneous inversion of both the three-dimensional velocity structure and the distribution of seismic foci. We applied the tomoADD algorithm, which uses a combination of absolute and differential arrival times and a concept of self-adapting grid geometry, accounting for ray density encountered across the volume. With this method the accuracy of event locations is improved and velocity structure near the source region is resolved in more detail than standard tomography. Fault plane solutions were obtained for the major and best-recorded earthquakes. The obtained velocity images highlight vertical and lateral heterogeneities that can be associated with structural features striking from NNE-SSW to NE-SW. These results are consistent with important tectonic elements visible at the surface and the pattern delineated by earthquake locations and focal mechanisms. (C) 2009 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据