4.4 Article

Boundary conditions for plasma fluid models at the magnetic presheath entrance

期刊

PHYSICS OF PLASMAS
卷 19, 期 12, 页码 -

出版社

AIP Publishing
DOI: 10.1063/1.4771573

关键词

-

资金

  1. Fonds National Suisse de la Recherche Scientifique

向作者/读者索取更多资源

The proper boundary conditions at the magnetic presheath entrance for plasma fluid turbulence models based on the drift approximation are derived, focusing on a weakly collisional plasma sheath with T-i << T-e and a magnetic field oblique to a totally absorbing wall. First, the location of the magnetic presheath entrance is rigorously derived. Then boundary conditions at the magnetic presheath entrance are analytically deduced for v(parallel to i), v(parallel to e), n, phi, T-e, and for the vorticity omega = del(2)(perpendicular to)phi. The effects of E x B and diamagnetic drifts on the boundary conditions are also investigated. Kinetic simulations are performed that confirm the analytical results. Finally, the new set of boundary conditions is implemented in a three-dimensional global fluid code for the simulation of plasma turbulence and, as an example, the results of a tokamak scrape-off layer simulation are discussed. The framework presented can be generalized to obtain boundary conditions at the magnetic presheath entrance in more complex scenarios. [http://dx.doi.org/10.1063/1.4771573]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Physics, Fluids & Plasmas

Moving toward mass-conserving simulations of plasma turbulence and kinetic neutrals in the tokamak boundary with the GBS code

A. Coroado, P. Ricci

Summary: A model for simulating the tokamak boundary, conserving mass and integrating plasma turbulence and neutral models, is described. The simulation results show the impact of mass conservation on plasma and neutral profiles.

PHYSICS OF PLASMAS (2021)

Article Computer Science, Interdisciplinary Applications

Simulations of plasmas and fluids using anti-symmetric models

Federico D. Halpern, Igor Sfiligoi, Mark Kostuk, Ryan Stefan

Summary: ALMA is a toolkit designed to solve hyperbolic conservation law systems in hybrid supercomputers, using the anti-symmetric formulation of fluids to obtain simple, robust, and easily parallelizable code. Practical GPU acceleration is realized on entire applications with an overall gain factor of 2 to 4, and ALMA also provides a parallel, GPU accelerated sparse solver based on geometric multigrid.

JOURNAL OF COMPUTATIONAL PHYSICS (2021)

Article Physics, Fluids & Plasmas

Validation of edge turbulence codes against the TCV-X21 diverted L-mode reference case

D. S. Oliveira, T. Body, D. Galassi, C. Theiler, E. Laribi, P. Tamain, A. Stegmeir, M. Giacomin, W. Zholobenko, P. Ricci, H. Bufferand, J. A. Boedo, G. Ciraolo, C. Colandrea, D. Coster, H. de Oliveira, G. Fourestey, S. Gorno, F. Imbeaux, F. Jenko, V. Naulin, N. Offeddu, H. Reimerdes, E. Serre, C. K. Tsui, N. Varini, N. Vianello, M. Wiesenberger, C. Wuethrich

Summary: In this study, self-consistent full-size turbulent-transport simulations of the divertor and scrape-off-layer of tokamaks are performed. A dataset called TCV-X21 is built for the validation of edge turbulence models, and three flux-driven 3D fluid-turbulence models are validated using this dataset. The results show that the simulations match the experimental profiles for most observables at the outboard midplane, but have comparatively poorer agreement towards the divertor targets.

NUCLEAR FUSION (2022)

Article Physics, Fluids & Plasmas

DIII-D research advancing the physics basis for optimizing the tokamak approach to fusion energy

M. E. Fenstermacher, J. Abbate, S. Abe, T. Abrams, M. Adams, B. Adamson, N. Aiba, T. Akiyama, P. Aleynikov, E. Allen, S. Allen, H. Anand, J. Anderson, Y. Andrew, T. Andrews, D. Appelt, R. Arbon, N. Ashikawa, A. Ashourvan, M. Aslin, Y. Asnis, M. Austin, D. Ayala, J. Bak, I Bandyopadhyay, S. Banerjee, K. Barada, L. Bardoczi, J. Barr, E. Bass, D. Battaglia, A. Battey, W. Baumgartner, L. Baylor, J. Beckers, M. Beidler, E. Belli, J. Berkery, T. Bernard, N. Bertelli, M. Beurskens, R. Bielajew, S. Bilgili, B. Biswas, S. Blondel, J. Boedo, I Bogatu, R. Boivin, T. Bolzonella, M. Bongard, X. Bonnin, P. Bonoli, M. Bonotto, A. Bortolon, S. Bose, N. Bosviel, S. Bouwmans, M. Boyer, W. Boyes, L. Bradley, R. Brambila, D. Brennan, S. Bringuier, L. Brodsky, M. Brookman, J. Brooks, D. Brower, G. Brown, W. Brown, M. Burke, K. Burrell, K. Butler, R. Buttery, I Bykov, P. Byrne, A. Cacheris, K. Callahan, J. Callen, G. Campbell, J. Candy, J. Canik, P. Cano-Megias, N. Cao, L. Carayannopoulos, T. Carlstrom, W. Carrig, T. Carter, W. Cary, L. Casali, M. Cengher, G. Cespedes Paz, R. Chaban, V Chan, B. Chapman, I Char, A. Chattopadhyay, R. Chen, J. Chen, X. Chen, X. Chen, J. Chen, M. Chen, J. Chen, Z. Chen, M. Choi, W. Choi, G. Choi, L. Chousal, C. Chrobak, C. Chrystal, Y. Chung, R. Churchill, M. Cianciosa, J. Clark, M. Clement, S. Coda, A. Cole, C. Collins, W. Conlin, A. Cooper, J. Cordell, B. Coriton, T. Cote, J. Cothran, A. Creely, N. Crocker, C. Crowe, B. Crowley, T. Crowley, D. Cruz-Zabala, D. Cummings, M. Curie, D. Curreli, A. Dal Molin, B. Dannels, A. Dautt-Silva, K. Davda, G. De Tommasi, P. De Vries, G. Degrandchamp, J. Degrassie, D. Demers, S. Denk, S. Depasquale, E. Deshazer, A. Diallo, S. Diem, A. Dimits, R. Ding, S. Ding, W. Ding, T. Do, J. Doane, G. Dong, D. Donovan, J. Drake, W. Drews, J. Drobny, X. Du, H. Du, V Duarte, D. Dudt, C. Dunn, J. Duran, A. Dvorak, F. Effenberg, N. Eidietis, D. Elder, D. Eldon, R. Ellis, W. Elwasif, D. Ennis, K. Erickson, D. Ernst, M. Fasciana, D. Fedorov, E. Feibush, N. Ferraro, J. Ferreira, J. Ferron, P. Fimognari, D. Finkenthal, R. Fitzpatrick, P. Fox, W. Fox, L. Frassinetti, H. Frerichs, H. Frye, Y. Fu, K. Gage, J. Galdon Quiroga, A. Gallo, Q. Gao, A. Garcia, M. Garcia Munoz, D. Garnier, A. Garofalo, A. Gattuso, D. Geng, K. Gentle, D. Ghosh, L. Giacomelli, S. Gibson, E. Gilson, C. Giroud, F. Glass, A. Glasser, D. Glibert, P. Gohil, R. Gomez, S. Gomez, X. Gong, E. Gonzales, A. Goodman, Y. Gorelov, V Graber, R. Granetz, T. Gray, D. Green, C. Greenfield, M. Greenwald, B. Grierson, R. Groebner, W. Grosnickle, M. Groth, H. Grunloh, S. Gu, W. Guo, H. Guo, P. Gupta, J. Guterl, W. Guttenfelder, T. Guzman, S. Haar, R. Hager, S. Hahn, M. Halfmoon, T. Hall, K. Hallatschek, F. Halpern, G. Hammett, H. Han, E. Hansen, C. Hansen, M. Hansink, J. Hanson, M. Hanson, G. Hao, A. Harris, R. Harvey, S. Haskey, E. Hassan, A. Hassanein, D. Hatch, R. Hawryluk, W. Hayashi, W. Heidbrink, J. Herfindal, J. Hicok, D. Hill, E. Hinson, C. Holcomb, L. Holland, C. Holland, E. Hollmann, J. Hollocombe, A. Holm, I Holmes, K. Holtrop, M. Honda, R. Hong, R. Hood, A. Horton, L. Horvath, M. Hosokawa, S. Houshmandyar, N. Howard, E. Howell, D. Hoyt, W. Hu, Y. Hu, Q. Hu, J. Huang, Y. Huang, J. Hughes, T. Human, D. Humphreys, P. Huynh, A. Hyatt, C. Ibanez, L. Ibarra, R. Icasas, K. Ida, V Igochine, Y. In, S. Inoue, A. Isayama, O. Izacard, V Izzo, A. Jackson, G. Jacobsen, A. Jaervinen, A. Jalalvand, J. Janhunen, S. Jardin, H. Jarleblad, Y. Jeon, H. Ji, X. Jian, E. Joffrin, A. Johansen, C. Johnson, T. Johnson, C. Jones, I Joseph, D. Jubas, B. Junge, W. Kalb, R. Kalling, C. Kamath, J. Kang, D. Kaplan, A. Kaptanoglu, S. Kasdorf, J. Kates-Harbeck, P. Kazantzidis, A. Kellman, D. Kellman, C. Kessel, K. Khumthong, E. Kim, H. Kim, J. Kim, S. Kim, J. Kim, H. Kim, K. Kim, C. Kim, W. Kimura, M. King, J. King, J. Kinsey, A. Kirk, B. Kiyan, A. Kleiner, V Klevarova, R. Knapp, M. Knolker, W. Ko, T. Kobayashi, E. Koch, M. Kochan, B. Koel, M. Koepke, A. Kohn, R. Kolasinski, E. Kolemen, E. Kostadinova, M. Kostuk, G. Kramer, D. Kriete, L. Kripner, S. Kubota, J. Kulchar, K. Kwon, R. La Haye, F. Laggner, H. Lan, R. Lantsov, L. Lao, A. Lasa Esquisabel, C. Lasnier, C. Lau, B. Leard, J. Lee, R. Lee, M. Lee, M. Lee, Y. Lee, C. Lee, J. Lee, S. Lee, M. Lehnen, A. Leonard, E. Leppink, M. Lesher, J. Lestz, J. Leuer, N. Leuthold, X. Li, K. Li, E. Li, G. Li, L. Li, Z. Li, J. Li, Y. Li, Z. Lin, D. Lin, X. Liu, J. Liu, Y. Liu, T. Liu, Y. Liu, C. Liu, Z. Liu, C. Liu, D. Liu, A. Liu, D. Liu, A. Loarte-Prieto, L. Lodestro, N. Logan, J. Lohr, B. Lombardo, J. Lore, Q. Luan, T. Luce, T. Luda Di Cortemiglia, N. Luhmann, R. Lunsford, Z. Luo, A. Lvovskiy, B. Lyons, X. Ma, M. Madruga, B. Madsen, C. Maggi, K. Maheshwari, A. Mail, J. Mailloux, R. Maingi, M. Major, M. Makowski, R. Manchanda, C. Marini, A. Marinoni, A. Maris, T. Markovic, L. Marrelli, E. Martin, J. Mateja, G. Matsunaga, R. Maurizio, P. Mauzey, D. Mauzey, G. Mcardle, J. Mcclenaghan, K. Mccollam, C. Mcdevitt, K. Mckay, G. Mckee, A. Mclean, V Mehta, E. Meier, J. Menard, O. Meneghini, G. Merlo, S. Messer, W. Meyer, C. Michael, C. Michoski, P. Milne, G. Minet, A. Misleh, Y. Mitrishkin, C. Moeller, K. Montes, M. Morales, S. Mordijck, D. Moreau, S. Morosohk, P. Morris, L. Morton, A. Moser, R. Moyer, C. Moynihan, T. Mrazkova, D. Mueller, S. Munaretto, J. Munoz Burgos, C. Murphy, K. Murphy, C. Muscatello, C. Myers, A. Nagy, G. Nandipati, M. Navarro, F. Nave, G. Navratil, R. Nazikian, A. Neff, G. Neilson, T. Neiser, W. Neiswanger, D. Nelson, A. Nelson, F. Nespoli, R. Nguyen, L. Nguyen, X. Nguyen, J. Nichols, M. Nocente, S. Nogami, S. Noraky, N. Norausky, M. Nornberg, R. Nygren, T. Odstrcil, D. Ogas, T. Ogorman, S. Ohdachi, Y. Ohtani, M. Okabayashi, M. Okamoto, L. Olavson, E. Olofsson, M. Omullane, R. Oneill, D. Orlov, W. Orvis, T. Osborne, D. Pace, G. Paganini Canal, A. Pajares Martinez, L. Palacios, C. Pan, Q. Pan, R. Pandit, M. Pandya, A. Pankin, Y. Park, J. Park, J. Park, S. Parker, P. Parks, M. Parsons, B. Patel, C. Pawley, C. Paz-Soldan, W. Peebles, S. Pelton, R. Perillo, C. Petty, Y. Peysson, D. Pierce, A. Pigarov, L. Pigatto, D. Piglowski, S. Pinches, R. Pinsker, P. Piovesan, N. Piper, A. Pironti, R. Pitts, J. Pizzo, U. Plank, M. Podesta, E. Poli, F. Poli, D. Ponce, Z. Popovic, M. Porkolab, G. Porter, C. Powers, S. Powers, R. Prater, Q. Pratt, I Pusztai, J. Qian, X. Qin, O. Ra, T. Rafiq, T. Raines, R. Raman, J. Rauch, A. Raymond, C. Rea, M. Reich, A. Reiman, S. Reinhold, M. Reinke, R. Reksoatmodjo, Q. Ren, Y. Ren, J. Ren, M. Rensink, J. Renteria, T. Rhodes, J. Rice, R. Roberts, J. Robinson, P. Rodriguez Fernandez, T. Rognlien, A. Rosenthal, S. Rosiello, J. Rost, J. Roveto, W. Rowan, R. Rozenblat, J. Ruane, D. Rudakov, J. Ruiz Ruiz, R. Rupani, S. Saarelma, S. Sabbagh, J. Sachdev, J. Saenz, S. Saib, M. Salewski, A. Salmi, B. Sammuli, C. Samuell, A. Sandorfi, C. Sang, J. Sarff, O. Sauter, K. Schaubel, L. Schmitz, O. Schmitz, J. Schneider, P. Schroeder, K. Schultz, E. Schuster, J. Schwartz, F. Sciortino, F. Scotti, J. Scoville, A. Seltzman, S. Seol, I Sfiligoi, M. Shafer, S. Sharapov, H. Shen, Z. Sheng, T. Shepard, S. Shi, Y. Shibata, G. Shin, D. Shiraki, R. Shousha, H. Si, P. Simmerling, G. Sinclair, J. Sinha, P. Sinha, G. Sips, T. Sizyuk, C. Skinner, A. Sladkomedova, T. Slendebroek, J. Slief, R. Smirnov, J. Smith, S. Smith, D. Smith, J. Snipes, G. Snoep, A. Snyder, P. Snyder, E. Solano, W. Solomon, J. Song, A. Sontag, V Soukhanovskii, J. Spendlove, D. Spong, J. Squire, C. Srinivasan, W. Stacey, G. Staebler, L. Stagner, T. Stange, P. Stangeby, R. Stefan, R. Stemprok, D. Stephan, J. Stillerman, T. Stoltzfus-Dueck, W. Stonecipher, S. Storment, E. Strait, D. Su, L. Sugiyama, Y. Sun, P. Sun, Z. Sun, A. Sun, D. Sundstrom, C. Sung, J. Sungcoco, W. Suttrop, Y. Suzuki, T. Suzuki, A. Svyatkovskiy, C. Swee, R. Sweeney, C. Sweetnam, G. Szepesi, M. Takechi, T. Tala, K. Tanaka, X. Tang, S. Tang, Y. Tao, R. Tao, D. Taussig, T. Taylor, K. Teixeira, K. Teo, A. Theodorsen, D. Thomas, K. Thome, A. Thorman, A. Thornton, A. Ti, M. Tillack, N. Timchenko, R. Tinguely, R. Tompkins, J. Tooker, A. Torrezan De Sousa, G. Trevisan, S. Tripathi, A. Trujillo Ochoa, D. Truong, C. Tsui, F. Turco, A. Turnbull, M. Umansky, E. Unterberg, P. Vaezi, P. Vail, J. Valdez, W. Valkis, B. Van Compernolle, J. Van Galen, R. Van Kampen, M. Van Zeeland, G. Verdoolaege, N. Vianello, B. Victor, E. Viezzer, S. Vincena, M. Wade, F. Waelbroeck, J. Wai, T. Wakatsuki, M. Walker, G. Wallace, R. Waltz, W. Wampler, L. Wang, H. Wang, Y. Wang, H. Wang, Z. Wang, H. Wang, Z. Wang, Y. Wang, G. Wang, S. Ward, M. Watkins, J. Watkins, W. Wehner, Y. Wei, M. Weiland, D. Weisberg, A. Welander, A. White, R. White, S. Wiesen, R. Wilcox, T. Wilks, M. Willensdorfer, H. Wilson, A. Wingen, M. Wolde, M. Wolff, K. Woller, A. Wolz, H. Wong, S. Woodruff, M. Wu, Y. Wu, S. Wukitch, G. Wurden, W. Xiao, R. Xie, Z. Xing, X. Xu, C. Xu, G. Xu, Z. Yan, X. Yang, S. Yang, T. Yokoyama, R. Yoneda, M. Yoshida, K. You, T. Younkin, J. Yu, M. Yu, G. Yu, Q. Yuan, L. Zaidenberg, L. Zakharov, A. Zamengo, S. Zamperini, M. Zarnstorff, E. Zeger, K. Zeller, L. Zeng, M. Zerbini, L. Zhang, X. Zhang, R. Zhang, B. Zhang, J. Zhang, J. Zhang, L. Zhao, B. Zhao, Y. Zheng, L. Zheng, B. Zhu, J. Zhu, Y. Zhu, Y. Zhu, M. Zsutty, M. Zuin

Summary: DIII-D physics research addresses critical challenges for the operation of ITER and the next generation of fusion energy devices by focusing on innovations for high performance long pulse operation and fundamental plasma physics understanding. The research has led to substantial improvements in off-axis current drive efficiency and Alfven eigenmode control, as well as validated models for pedestal recovery after ELMs and disruption mitigation techniques. The findings provide confidence in optimizing future tokamak operation and handling disruptivity.

NUCLEAR FUSION (2022)

Article Physics, Fluids & Plasmas

A self-consistent multi-component model of plasma turbulence and kinetic neutral dynamics for the simulation of the tokamak boundary

A. Coroado, P. Ricci

Summary: A self-consistent model for simulating a multi-component plasma in the tokamak boundary is presented. The model takes into account a deuterium plasma with various collisional interactions between plasma and neutral species. The study also derives equations describing turbulent plasma dynamics and advection equations for neutral species, and discusses their numerical implementation.

NUCLEAR FUSION (2022)

Article Physics, Fluids & Plasmas

Validation of edge turbulence codes in a magnetic X-point scenario in TORPEX

D. Galassi, C. Theiler, T. Body, F. Manke, P. Micheletti, J. Omotani, M. Wiesenberger, M. Baquero-Ruiz, I. Furno, M. Giacomin, E. Laribi, F. Militello, P. Ricci, A. Stegmeir, P. Tamain, H. Bufferand, G. Ciraolo, H. De Oliveira, A. Fasoli, V. Naulin, S. L. Newton, N. Offeddu, D. S. Oliveira, E. Serre, N. Vianello

Summary: This paper presents a rigorous validation of full-scale simulations of a newly developed X-point scenario in the basic toroidal plasma device TORPEX. The simulations were able to qualitatively reproduce some characteristics of the X-point dynamics, but generally underestimated the fluctuation levels. The results reveal the challenges in reproducing plasma dynamics near an X-point and provide a clear path for future developments in turbulence codes.

PHYSICS OF PLASMAS (2022)

Article Physics, Fluids & Plasmas

Local gyrokinetic collisional theory of the ion-temperature gradient mode

B. J. Frei, A. C. D. Hoffmann, P. Ricci

Summary: We present a study of the linear properties of the ion-temperature gradient (ITG) modes with collisions modelled for the first time by the linearized gyrokinetic (GK) Coulomb collision operator. Parameter scans reveal the dependence of the ITG growth rate on the collisionality modelled using the GK Coulomb operator, showing strong damping at small scales as the collisionality increases. The importance of FLR terms in the collision operators is pointed out by the appearance of a short wavelength ITG branch when collisional FLR terms are neglected.

JOURNAL OF PLASMA PHYSICS (2022)

Article Physics, Fluids & Plasmas

Global fluid simulation of plasma turbulence in a stellarator with an island divertor

A. J. Coelho, J. Loizu, P. Ricci, M. Giacomin

Summary: In this study, results of a three-dimensional, flux-driven, electrostatic, global, two-fluid turbulence simulation for a stellarator with an island divertor are presented. The heat from the core is transported along magnetic islands to the island region. Radial transport of particles and heat is primarily driven by a field-aligned coherent mode.

NUCLEAR FUSION (2022)

Article Physics, Fluids & Plasmas

Overview of the TCV tokamak experimental programme

H. Reimerdes, M. Agostini, E. Alessi, S. Alberti, Y. Andrebe, H. Arnichand, J. Balbin, F. Bagnato, M. Baquero-Ruiz, M. Bernert, W. Bin, P. Blanchard, T. C. Blanken, J. A. Boedo, D. Brida, S. Brunner, C. Bogar, O. Bogar, T. Bolzonella, F. Bombarda, F. Bouquey, C. Bowman, D. Brunetti, J. Buermans, H. Bufferand, L. Calacci, Y. Camenen, S. Carli, D. Carnevale, F. Carpanese, F. Causa, J. Cavalier, M. Cavedon, J. A. Cazabonne, J. Cerovsky, R. Chandra, A. Chandrarajan Jayalekshmi, O. Chellai, P. Chmielewski, D. Choi, G. Ciraolo, I. G. J. Classen, S. Coda, C. Colandrea, A. Dal Molin, P. David, M. R. de Baar, J. Decker, W. Dekeyser, H. de Oliveira, D. Douai, M. Dreval, M. G. Dunne, B. P. Duval, S. Elmore, O. Embreus, F. Eriksson, M. Faitsch, G. Falchetto, M. Farnik, A. Fasoli, N. Fedorczak, F. Felici, O. Fevrier, O. Ficker, A. Fil, M. Fontana, E. Fransson, L. Frassinetti, I Furno, D. S. Gahle, D. Galassi, K. Galazka, C. Galperti, S. Garavaglia, M. Garcia-Munoz, B. Geiger, M. Giacomin, G. Giruzzi, M. Gobbin, T. Golfinopoulos, T. Goodman, S. Gorno, G. Granucci, J. P. Graves, M. Griener, M. Gruca, T. Gyergyek, R. Haelterman, A. Hakola, W. Han, T. Happel, G. Harrer, J. R. Harrison, S. Henderson, G. M. D. Hogeweij, J-P Hogge, M. Hoppe, J. Horacek, Z. Huang, A. Iantchenko, P. Innocente, K. Insulander Bjork, C. Ionita-Schrittweiser, H. Isliker, A. Jardin, R. J. E. Jaspers, R. Karimov, A. N. Karpushov, Y. Kazakov, M. Komm, M. Kong, J. Kovacic, O. Krutkin, O. Kudlacek, U. Kumar, R. Kwiatkowski, B. Labit, L. Laguardia, J. T. Lammers, E. Laribi, E. Laszynska, A. Lazaros, O. Linder, B. Linehan, B. Lipschultz, X. Llobet, J. Loizu, T. Lunt, E. Macusova, Y. Marandet, M. Maraschek, G. Marceca, C. Marchetto, S. Marchioni, E. S. Marmar, Y. Martin, L. Martinelli, F. Matos, R. Maurizio, M-L Mayoral, D. Mazon, V Menkovski, A. Merle, G. Merlo, H. Meyer, K. Mikszuta-Michalik, P. A. Molina Cabrera, J. Morales, J-M Moret, A. Moro, D. Moulton, H. Muhammed, O. Myatra, D. Mykytchuk, F. Napoli, R. D. Nem, A. H. Nielsen, M. Nocente, S. Nowak, N. Offeddu, J. Olsen, F. P. Orsitto, O. Pan, G. Papp, A. Pau, A. Perek, F. Pesamosca, Y. Peysson, L. Pigatto, C. Piron, M. Poradzinski, L. Porte, T. Putterich, M. Rabinski, H. Raj, J. J. Rasmussen, G. A. Ratta, T. Ravensbergen, D. Ricci, P. Ricci, N. Rispoli, F. Riva, J. F. Rivero-Rodriguez, M. Salewski, O. Sauter, B. S. Schmidt, R. Schrittweiser, S. Sharapov, U. A. Sheikh, B. Sieglin, M. Silva, A. Smolders, A. Snicker, C. Sozzi, M. Spolaore, A. Stagni, L. Stipani, G. Sun, T. Tala, P. Tamain, K. Tanaka, A. Tema Biwole, D. Terranova, J. L. Terry, D. Testa, C. Theiler, A. Thornton, A. Thrysoe, H. Torreblanca, C. K. Tsui, D. Vaccaro, M. Vallar, M. van Berkel, D. Van Eester, R. J. R. van Kampen, S. Van Mulders, K. Verhaegh, T. Verhaeghe, N. Vianello, F. Villone, E. Viezzer, B. Vincent, I Voitsekhovitch, N. M. T. Vu, N. Walkden, T. Wauters, H. Weisen, N. Wendler, M. Wensing, F. Widmer, S. Wiesen, M. Wischmeier, T. A. Wijkamp, D. Wunderlich, C. Wuthrich, V Yanovskiy, J. Zebrowski

Summary: The tokamak configuration variable (TCV) continues to address critical issues in fusion power preparation through its unique shaping capabilities, flexible heating systems, and modern control system. Significant progress has been made in the 2019-20 campaign, with the installation of removable divertor gas baffles, upgraded diagnostic capabilities, and new heating systems. The results of the TCV campaign demonstrate its successful integration within the European research effort and international collaborations.

NUCLEAR FUSION (2022)

Article Physics, Multidisciplinary

First-Principles Density Limit Scaling in Tokamaks Based on Edge Turbulent Transport and Implications for ITER

M. Giacomin, A. Pau, P. Ricci, O. Sauter, T. Eich

Summary: A first-principles scaling law, based on turbulent transport considerations, and a multimachine database of density limit discharges from different tokamaks, shows the relationship between boundary turbulent transport and plasma collisionality, which determines the maximum achievable density in tokamaks. This study predicts a significantly larger safety margin for ITER compared to the Greenwald empirical scaling in case of unintentional high-to-low confinement transition.

PHYSICAL REVIEW LETTERS (2022)

Article Physics, Fluids & Plasmas

Numerical simulations of gas puff imaging using a multi-component model of the neutral-plasma interaction in the tokamak boundary

A. Coroado, P. Ricci

Summary: A three-dimensional simulation of gas puff imaging (GPI) diagnostics is performed, considering the turbulent dynamics of D+ and D-2(+) ions and D and D-2 neutral species. The simulation highlights the importance of considering D-alpha emission and neutral fluctuations in the interpretation of GPI measurements, as they significantly impact the correlation functions and quantitative interpretations.

PHYSICS OF PLASMAS (2022)

Article Physics, Fluids & Plasmas

Kinetic modeling of neutral transport for a continuum gyrokinetic code

T. N. Bernard, F. D. Halpern, M. Francisquez, N. R. Mandell, J. Juno, G. W. Hammett, A. Hakim, G. J. Wilkie, J. Guterl

Summary: This study presents the novel coupling of a continuum full-F gyrokinetic turbulence model with a 6D continuum model for kinetic neutrals using the Gkeyll code. The aim is to improve the understanding of the role of neutrals in plasma fueling, detachment, and their interaction with edge plasma profiles and turbulence statistics.

PHYSICS OF PLASMAS (2022)

Article Computer Science, Interdisciplinary Applications

The GBS code for the self-consistent simulation of plasma turbulence and kinetic neutral dynamics in the tokamak boundary

M. Giacomin, P. Ricci, A. Coroado, G. Fourestey, D. Galassi, E. Lanti, D. Mancini, N. Richart, L. N. Stenger, N. Varini

Summary: This paper describes a new version of the GBS code that extends the simulation domain to encompass the entire plasma volume and introduces a toroidal coordinate system for increased flexibility. A new iterative solver for Poisson and Ampere equations is implemented, leading to faster code execution. The self-consistent kinetic neutral model is optimized for different magnetic configurations. The numerical implementation is verified using the method of manufactured solutions. A simulation of a TCV tokamak discharge is presented as an example.

JOURNAL OF COMPUTATIONAL PHYSICS (2022)

Article Physics, Fluids & Plasmas

Turbulent transport regimes in the tokamak boundary and operational limits

M. Giacomin, P. Ricci

Summary: Two-fluid, three-dimensional, flux-driven, global, electromagnetic turbulence simulations using the GBS code identified four turbulent transport regimes and determined the main parameters controlling turbulent transport in the tokamak boundary.

PHYSICS OF PLASMAS (2022)

Article Physics, Fluids & Plasmas

Drift-ordered fluid vorticity equation with energy consistency

Federico D. Halpern, Ronald E. Waltz, Tess N. Bernard

Summary: This paper aims to improve the drift-fluid models and find a simplified solution for numerical applications. The main result is an improved version of the drift-Braginskii equations with a generalized vorticity function, which conserves kinetic energy.

PHYSICS OF PLASMAS (2023)

暂无数据