4.7 Article

A direct numerical simulation study of vorticity transformation in weakly turbulent premixed flames

期刊

PHYSICS OF FLUIDS
卷 26, 期 10, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4898640

关键词

-

资金

  1. Chalmers e-Science Centre
  2. Combustion Engine Research Center (CERC)
  3. Swedish Energy Agency

向作者/读者索取更多资源

Database obtained earlier in 3D Direct Numerical Simulations (DNS) of statistically stationary, 1D, planar turbulent flames characterized by three different density ratios a is processed in order to investigate vorticity transformation in premixed combustion under conditions of moderately weak turbulence (rms turbulent velocity and laminar flame speed are roughly equal to one another). In cases H and M characterized by sigma = 7.53 and 5.0, respectively, anisotropic generation of vorticity within the flame brush is reported. In order to study physical mechanisms that control this phenomenon, various terms in vorticity and enstrophy balance equations are analyzed, with both mean terms and terms conditioned on a particular value c of the combustion progress variable being addressed. Results indicate an important role played by baroclinic torque and dilatation in transformation of average vorticity and enstrophy within both flamelets and flame brush. Besides these widely recognized physical mechanisms, two other effects are documented. First, viscous stresses redistribute enstrophy within flamelets, but play a minor role in the balance of the mean enstrophy (Omega) over bar within turbulent flame brush. Second, negative correlation V (Omega) over bar' between fluctuations in velocity u and enstrophy gradient contributes substantially to an increase in the mean (Omega) over bar within turbulent flame brush. This negative correlation is mainly controlled by the positive correlation between fluctuations in the enstrophy and dilatation and, therefore, dilatation fluctuations substantially reduce the damping effect of the mean dilatation on the vorticity and enstrophy fields. In case L characterized by sigma = 2.5, these effects are weakly pronounced and (Omega) over bar is reduced mainly due to viscosity. Under conditions of the present DNS, vortex stretching plays a minor role in the balance of vorticity and enstrophy within turbulent flame brush in all three cases. (C) 2014 AIP Publishing LLC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据