4.7 Article

Effects of background noise on generating coherent packets of hairpin vortices

期刊

PHYSICS OF FLUIDS
卷 20, 期 10, 页码 -

出版社

AIP Publishing
DOI: 10.1063/1.3001797

关键词

-

资金

  1. Brain Korea 21 Project

向作者/读者索取更多资源

We examine the autogeneration process by which new hairpin vortices are created from a sufficiently strong hairpin vortex, leading to the formation of a hairpin packet. Emphasis is placed on the effects of background noise on packet formation. The initial conditions are given by conditionally averaged flow fields associated with the second quadrant (Q2) event in the fully turbulent channel flow direct numerical simulation (DNS) database at Re-tau = 395. The nonlinear evolution of the initial vortical structure is tracked by performing a spectral simulation. Background noise is introduced by adding small amplitude perturbations to the initial field or by imposing momentum forcing. The background noise gives rise to chaotic development of a hairpin packet. The hairpins become asymmetric, leading to much more complicated packet structures than are observed in the symmetric hairpin vortex train of the flow with a clean background. However, the chaotic packets show the same properties as the clean packet in terms of the rate of growth of vertical and spanwise dimensions and the distance between successive vortices, suggesting that the autogeneration mechanism is robust. The background noise leads to a decrease in the minimum value of the Q2 strength required to trigger autogeneration, indicating that background noise enhances autogeneration, especially in the buffer layer. The autogeneration process is more enhanced by the background noise with wavenumbers k(x) < k(z). Conditionally averaged flow fields around the tall attached vortices in the hairpin packet show that they are associated with elongated low-momentum structures in the streamwise direction. Finally, the autogeneration process was tested in a real turbulent environment taken from an instantaneous field of a turbulent channel flow DNS. The generation of secondary hairpin vortices is clearly observed upstream of the primary hairpin. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.3001797]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据