4.7 Article

Subleading contributions to the width of the Ds0*(2317)

期刊

PHYSICS LETTERS B
卷 666, 期 3, 页码 251-255

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.physletb.2008.07.060

关键词

D-s0*(2317); hadronic molecule; chiral Lagrangian; isospin violation

资金

  1. Helmholtz Association [VH-VI-231]
  2. EU Integrated Infrastructure Initiative Hadron Physics [RII3-CT-2004-506078]

向作者/读者索取更多资源

We construct the effective chiral Lagrangian involving the D-mesons and Goldstone bosons at next-to-leading order taking into account strong as well as electromagnetic interactions. This allows us to disentangle-to leading order in isospin violation-the electromagnetic and the strong contribution to the D-meson mass differences. In addition, we also apply the interaction to the decay D-s0*(2317) -> D-s pi(0) under the assumption that the D-s0* (2317) is a hadronic molecule. We find (180 +/- 110) keV for the decay width Gamma(D-s0*(2317) -> D-s pi(0))-consistent with currently existing experimental constraints as well as previous theoretical investigations. The result provides further evidence that this decay width can serve as a criterion for testing the nature of the D-s0*(2317). (C) 2008 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Physics, Multidisciplinary

Isospin-conserving hadronic decay of the Ds1(2460) into Dsπ+π-

Meng-Na Tang, Yong-Hui Lin, Feng-Kun Guo, Christoph Hanhart, Ulf-G. Meissner

Summary: The internal structure of charm-strange mesons D-s0*(2317) and D-s1(2460) is being extensively studied. Their narrow widths are due to their dominant decay through isospin-breaking hadronic channels. The decay of D-s1(2460) can also occur through hadronic final states with isospin conservation, but is strongly suppressed due to phase space limitations. By considering the Ds1(2460) as a D*K hadronic molecule, we find that the predicted partial widths and the pi(+)pi(-) invariant mass distribution are consistent with experimental measurements, and suggest possible ways to distinguish between the hadronic molecular and compact state pictures for the D-s1(2460)(+). Predictions for B-s1(0) -> B-s(0) pi(+) pi(-) are also made.

COMMUNICATIONS IN THEORETICAL PHYSICS (2023)

Article Multidisciplinary Sciences

Emergent geometry and duality in the carbon nucleus

Shihang Shen, Serdar Elhatisari, Timo A. Laehde, Dean Lee, Bing-Nan Lu, Ulf-G. Meissner

Summary: The carbon atom is the backbone of organic chemistry and has a complex nucleus in its predominant isotope, C-12. In this study, a model-independent density map of the nuclear states of C-12 is provided using nuclear lattice effective field theory. The well-known Hoyle state is found to have a bent-arm or obtuse triangular arrangement of alpha clusters. All low-lying nuclear states of C-12 are identified as having an intrinsic shape composed of three alpha clusters forming either an equilateral triangle or an obtuse triangle.

NATURE COMMUNICATIONS (2023)

Article Multidisciplinary Sciences

Understanding the 0++ and 2++ charmonium(-like) states near 3.9 GeV

Teng Ji, Xiang-Kun Dong, Miguel Albaladejo, Meng-Lin Du, Feng-Kun Guo, Juan Nieves, Bing-Song Zou

Summary: We propose that the X(3915) observed in the J/psi x channel is the same as the chi(c2)(3930), while the X(3960) observed in the Ds+Ds- channel is an S-wave Ds+Ds- hadronic molecule. Additionally, we find that the B+ -> D+D-K+ component with J(PC) = 0(++) assigned to the X(3915) in the current Review of Particle Physics has the same origin as the X(3960) with a mass of around 3.94 GeV. By analyzing available data in the D (D) over bar and Ds+Ds- channels from B decays and gamma gamma fusion reaction, considering both the D (D) over bar -D-s(D) over bar (s)-D*(D) over bar*-D-s*(D) over bar (s)* coupled channels with 0(++) and a 2(++) state introduced additionally, we find that all the data in different processes can be simultaneously well reproduced, and four hidden-charm scalar molecular states with masses around 3.73, 3.94, 3.99, and 4.23 GeV are produced. These results may deepen our understanding of the spectrum of charmonia and the interactions between charmed hadrons.

SCIENCE BULLETIN (2023)

Article Astronomy & Astrophysics

On the eta(1)(1855), pi(1)(1400) and pi(1)(1600) as Dynamically Generated States and Their SU(3) Partners

Mao-Jun Yan, Jorgivan M. M. Dias, Adolfo Guevara, Feng-Kun Guo, Bing-Song Zou

Summary: We interpret the newly observed eta(1)(1855) resonance with exotic J(PC) = 1(-+) quantum numbers in the I = 0 sector, as a dynamically generated state from the interaction between lightest pseudoscalar mesons and axial-vector mesons. The interaction is derived from the lowest order chiral Lagrangian, which is then unitarized using the Bethe-Salpeter equation, according to the chiral unitary approach. We evaluate the decays of eta(1)(1855) into eta eta' and K (K) over bar*pi channels, and find that the latter has a larger branching fraction. Furthermore, we investigate its SU(3) partners and suggest searching for two additional eta(1) exotic mesons with masses around 1.4 and 1.7 GeV.

UNIVERSE (2023)

Article Astronomy & Astrophysics

New insights into the nature of the Λ(1380) and Λ(1405) resonances away from the SU(3) limit

Feng-Kun Guo, Yuki Kamiya, Maxim Mai, Ulf-G. Meissner

Summary: Starting from the SU(3) limit, the nature of the dynamically generated resonances Lambda(1380), Lambda(1405) and Lambda(1680) were studied as the masses of pion and kaon were tuned to their physical values. It was found that the accidental symmetry of the two octets due to the leading order Weinberg-Tomozawa term is broken by the next-to-leading order terms. Most interestingly, an interchange of the two trajectories of Lambda(1380) and Lambda(1405) away from the SU(3) limit at next-to-leading order was observed.

PHYSICS LETTERS B (2023)

Review Physics, Nuclear

Precision studies of QCD in the low energy domain of the EIC

V. D. Burkert, L. Elouadrhiri, A. Afanasev, J. Arrington, M. Contalbrigo, W. Cosyn, A. Deshpande, D. I. Glazier, X. Ji, S. Liuti, Y. Oh, D. Richards, T. Satogata, A. Vossen, H. Abdolmaleki, A. Albataineh, C. A. Aidala, C. Alexandrou, H. Avagyan, A. Bacchetta, M. Baker, F. Benmokhtar, J. C. Bernauer, C. Bissolotti, W. Briscoe, D. Byers, Xu Cao, C. E. Carlson, K. Cichy, I. C. Cloet, C. Cocuzza, P. L. Cole, M. Constantinou, A. Courtoy, H. Dahiyah, K. Dehmelt, S. Diehl, C. Dilks, C. Djalali, R. Dupre, S. C. Dusa, B. El-Bennich, L. El Fassi, T. Frederico, A. Freese, B. R. Gamage, L. Gamberg, R. R. Ghoshal, F. X. Girod, V. P. Goncalves, Y. Gotra, F. K. Guo, X. Guo, M. Hattawy, Y. Hatta, T. Hayward, O. Hen, G. M. Huber, C. Hyde, E. L. Isupov, B. Jacak, W. Jacobs, A. Jentsch, C. R. Ji, S. Joosten, N. Kalantarians, Z. Kang, A. Kim, S. Klein, B. Kriesten, S. Kumano, A. Kumar, K. Kumericki, M. Kuchera, W. K. Lai, Jin Li, Shujie Li, W. Li, X. Li, H. -W. Lin, K. F. Liu, Xiaohui Liu, P. Markowitz, V Mathieu, M. McEneaney, A. Mekki, J. P. B. C. de Melo, Z. E. Meziani, R. Milner, H. Mkrtchyan, V. Mochalov, V. Mokeev, V. Morozov, H. Moutarde, M. Murray, S. Mtingwa, P. Nadel-Turonski, V. A. Okorokov, E. Onyie, L. L. Pappalardo, Z. Papandreou, C. Pecar, A. Pilloni, B. Pire, N. Polys, A. Prokudin, M. Przybycien, J. -W. Qiu, M. Radici, R. Reed, F. Ringer, B. J. Roy, N. Sato, A. Schaefer, B. Schmookler, G. Schnell, P. Schweitzer, R. Seidl, K. M. Semenov-Tian-Shansky, F. Serna, F. Shaban, M. H. Shabestari, K. Shiells, A. Signori, H. Spiesberger, I. Strakovsky, R. S. Sufian, A. Szczepaniak, L. Teodorescu, J. Terry, O. Teryaev, F. Tessarotto, C. Timmer, Abdel Nasser Tawfik, L. Valenzuela Cazares, A. Vladimirov, E. Voutier, D. Watts, D. Wilson, D. Winney, B. Xiao, Z. Ye, Zh. Ye, F. Yuan, N. Zachariou, I. Zahed, J. L. Zhang, Y. Zhang, J. Zhou

Summary: This White Paper aims to emphasize the significant advantages in the scientific progress achieved by the EIC. High luminosity operation is highly desirable as it allows for faster production and collection of scientific results. This becomes crucial for programs that require months or even years of operation at lower luminosity.

PROGRESS IN PARTICLE AND NUCLEAR PHYSICS (2023)

Article Physics, Particles & Fields

Definition of gravitational local spatial densities for spin-0 and spin-1/2 systems

J. Yu. Panteleeva, E. Epelbaum, J. Gegelia, U. -G. Meissner

Summary: We determine the definition details of the spatial densities corresponding to the gravitational form factors of spin-0 and spin-1/2 systems using spherically symmetric sharply localized wave packets. The expressions for these spatial densities are provided in reference frames with both zero and non-zero expectation values of the momentum operator.

EUROPEAN PHYSICAL JOURNAL C (2023)

Article Astronomy & Astrophysics

Determination of diffractive PDFs from a global QCD analysis of inclusive diffractive DIS and dijet cross-section measurements at HERA

Maral Salajegheh, Hamzeh Khanpour, Ulf-G. Meissner, Hadi Hashamipour, Maryam Soleymaninia

Summary: This study presents an updated set of SKMHS diffractive parton distribution functions (PDFs), including the recent diffractive dijet cross-section measurement. The new sets, SKMHS23 and SKMHS23-dijet, are presented at NLO and NNLO accuracy in perturbative QCD. The effect of diffractive dijet data and higher-order QCD corrections on the extracted PDFs and data/theory agreements are clearly examined and discussed.

PHYSICAL REVIEW D (2023)

Article Astronomy & Astrophysics

Hadronic decays of the heavy-quark-spin molecular partner of T cc

Zhao-Sai Jia, Mao-Jun Yan, Zhen-Hua Zhang, Pan-Pan Shi, Gang Li, Feng-Kun Guo

Summary: Based on the hypothesis that the Tcc discovered at LHCb is a D0=D0 hadronic molecule, we studied the partial width of its heavy quark spin partner, the Tcc, as a D⠂0D⠂0 shallow bound state. We considered the contributions of the D⠂D and D⠂pi final state interactions and found that the rescattering corrections can significantly affect the decay widths. The total width of the Tcc was predicted to be about 41 keV.

PHYSICAL REVIEW D (2023)

Article Physics, Nuclear

Hyperon-nucleon interaction in chiral effective field theory at next-to-next-to-leading order

Johann Haidenbauer, Ulf-G. Meissner, Andreas Nogga, Hoai Le

Summary: A hyperon-nucleon potential for the S = -1 sector up to third order in the chiral expansion is introduced, considering both the SU(3) flavor symmetry and explicit SU(3) symmetry breaking. An innovative regularization scheme is used, leading to an excellent description of scattering data and the analysis of new data from J-PARC. Results for hypertriton and A = 4 hyper-nuclear separation energies are presented, along with an uncertainty estimate for selected observables in the hyperon-nucleon system.

EUROPEAN PHYSICAL JOURNAL A (2023)

Article Physics, Nuclear

The electromagnetic Sigma-to-Lambda transition form factors with coupled-channel effects in the space-like region

Yong-Hui Lin, Hans-Werner Hammer, Ulf-G. Meissner

Summary: Using dispersion theory, the Sigma-to-Lambda transition form factors in electromagnetic interactions are calculated considering the pion electromagnetic form factor, SU(3) chiral perturbation theory, the baryon decuplet, and the pi pi- K coupled-channel effect. The electric form factor is significantly affected by the inclusion of the K channel, while the magnetic form factor is minimally affected. The uncertainties in the three-flavor chiral perturbation theory are estimated using a bootstrap sampling method.

EUROPEAN PHYSICAL JOURNAL A (2023)

Article Physics, Particles & Fields

PccN states in a unitarized coupled-channel approach

Chao-Wei Shen, Yong-hui Lin, Ulf-G. Meissner

Summary: Using an effective Lagrangian with heavy quark spin symmetry, this study investigates the coupled-channel dynamics of the doubly charmed systems D-(*) Sigma((*))(c). The potential considered includes exchanges of pseudoscalar and vector mesons in the t-channel. By applying the first iterated solution of the N/ D method, several S-wave bound states with isospin I = 1/2 are discovered. These states correspond to open-charm partners of the hidden charm pentaquarks P-psi(N) observed by the LHCb Collaboration.

EUROPEAN PHYSICAL JOURNAL C (2023)

Article Physics, Particles & Fields

Definition of gravitational local spatial densities for spin-0 and spin-1/2 systems

J. Yu. Panteleeva, E. Epelbaum, J. Gegelia, U-G Meissner

Summary: Using spherically symmetric sharply localized wave packets, we determine the details of defining the spatial densities corresponding to the gravitational form factors of spin-0 and spin-1/2 systems. The expressions for the spatial densities are provided in the frames with both zero and non-zero expectation values of the momentum operator.

EUROPEAN PHYSICAL JOURNAL C (2023)

Article Astronomy & Astrophysics

Inhomogeneity of a rotating quark-gluon plasma from holography

Nelson R. F. Braga, Octavio C. Junqueira

Summary: This study investigates the influence of rotation on the transition temperature of strongly interacting matter produced in non-central heavy ion collisions. By using a holographic description of an AdS black hole, the authors extend the analysis to the more realistic case where the matter spreads over a region around the rotational axis. The results show the coexistence of confined and deconfined phases and are consistent with the concept of local temperature in rotating frames developed by Tolman and Ehrenfest.

PHYSICS LETTERS B (2024)

Article Astronomy & Astrophysics

Constrain the time variation of the gravitational constant via the propagation of gravitational waves

Bing Sun, Jiachen An, Zhoujian Cao

Summary: This paper investigates the effect of gravitational constant variation on the propagation of gravitational waves. By employing two analytical methods, the study finds that variations in the gravitational constant result in amplitude and phase corrections for gravitational waves, and the time variation of the gravitational constant can be constrained through the propagation of gravitational waves.

PHYSICS LETTERS B (2024)

Article Astronomy & Astrophysics

Quantum tunneling from Schwarzschild black hole in non-commutative gauge theory of gravity

Abdellah Touati, Zaim Slimane

Summary: This letter presents the first study of Hawking radiation as a tunneling process within the framework of non-commutative gauge theory of gravity. The non-commutative Schwarzschild black hole is reconstructed using the Seiberg-Witten map and the star product. The emission spectrum of outgoing massless particles is computed using the quantum tunneling mechanism. The results reveal pure thermal radiation in the low-frequency scenario, but a deviation from pure thermal radiation in the high-frequency scenario due to energy conservation. It is also found that noncommutativity enhances the correlations between successively emitted particles.

PHYSICS LETTERS B (2024)

Article Astronomy & Astrophysics

Compact stars: To cross or go around? That is the question

Shahar Hod

Summary: The travel times of light signals between two antipodal points on a compact star's surface are calculated for two different trajectories. It is shown that, for highly dense stars, the longer trajectory along the surface may have a shorter travel time as measured by asymptotic observers. A critical value of the dimensionless density-area parameter is determined for constant density stars to distinguish cases where crossing through the star's center or following a semi-circular trajectory on the surface has a shorter travel time as measured by asymptotic observers.

PHYSICS LETTERS B (2024)