4.5 Article

Quantum transport in carbon nanoscrolls

期刊

PHYSICS LETTERS A
卷 376, 期 4, 页码 515-520

出版社

ELSEVIER
DOI: 10.1016/j.physleta.2011.10.049

关键词

Electron transport; Electronic properties; Carbon nanoscroll

资金

  1. National Science Council of Taiwan, the Republic of China [NSC 100-2112-M-168-001-MY3]

向作者/读者索取更多资源

The transport properties of carbon nanoscrolls in a uniform electric field are investigated by using the Landauer-Buttiker formula. The energy dispersions depend sensitively on the geometry and the field strength. The bandgaps may become zero and exhibit the semiconductor-metal transitions. Variations in the electronic structures with the geometry or the field strength are reflected in the conductance. The conductance exhibits a stepwise behavior, caused by the discrete number of quantized channels contributing to transport. The shoulders of the conductance are stretched out as temperature rises. (C) 2011 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
Article Physics, Multidisciplinary

Robust enhanced acoustic sensing via gradient phononic crystals

Tinggui Chen, Baizhan Xia, Dejie Yu, Chuanxing Bi

Summary: This study proposes a gradient phononic crystal structure for enhanced acoustic sensing. By breaking the symmetry of the PC structure, topologically protected edge states are introduced, resulting in topological acoustic rainbow trapping. The robustness and enhancement properties are verified numerically and experimentally.

PHYSICS LETTERS A (2024)