4.8 Article

Jamming Behavior of Domains in a Spiral Antiferromagnetic System

期刊

PHYSICAL REVIEW LETTERS
卷 110, 期 21, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.110.217201

关键词

-

资金

  1. Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DEAC02-05CH11231]
  2. Basic Energy Sciences, U.S. Department of Energy [DE-SC0003678]

向作者/读者索取更多资源

Using resonant magnetic x-ray photon correlation spectroscopy, we show that the domains of a spiral antiferromagnet enter a jammed state at the onset of long-range order. We find that the slow thermal fluctuations of the domain walls exhibit a compressed exponential relaxation with an exponent of 1.5 found in a wide variety of solidlike jammed systems and can be qualitatively explained in terms of stress release in a stressed network. As the temperature decreases, the energy barrier for fluctuations becomes large enough to arrest further domain wall fluctuations, and the domains freeze into a spatial configuration within 10 K of the Neel temperature. The relaxation times can be fitted with the Vogel-Fulcher law as observed in polymers, glasses, and colloids, thereby indicating that the dynamics of domain walls in an ordered antiferromagnet exhibit some of the universal features associated with jamming behavior.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据