4.8 Article

Quasiuniversal Transient Behavior of a Nonequilibrium Mott Insulator Driven by an Electric Field

期刊

PHYSICAL REVIEW LETTERS
卷 109, 期 26, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.109.260402

关键词

-

资金

  1. MURI Grant from the Air Force Office of Scientific Research [FA9559-09-1-0617]
  2. DoD at the Arctic Region Supercomputing Center
  3. Engineering Research and Development Center
  4. Air Force Research and Development Center
  5. Indo-US Science and Technology Forum under Joint Center Grant [JC-18-2009]
  6. Department of Science and Technology of India

向作者/读者索取更多资源

We use a self-consistent strong-coupling expansion for the self-energy (perturbation theory in the hopping) to describe the nonequilibrium dynamics of strongly correlated lattice fermions. We study the three-dimensional homogeneous Fermi-Hubbard model driven by an external electric field showing that the damping of the ensuing Bloch oscillations depends on the direction of the field and that for a broad range of field strengths a long-lived transient prethermalized state emerges. This long-lived transient regime implies that thermal equilibrium may be out of reach of the time scales accessible in present cold atom experiments but shows that an interesting new quasiuniversal transient state exists in nonequilibrium governed by a thermalized kinetic energy but not a thermalized potential energy. In addition, when the field strength is equal in magnitude to the interaction between atoms, the system undergoes a rapid thermalization, characterized by a different quasiuniversal behavior of the current and spectral function for different values of the hopping. DOI: 10.1103/PhysRevLett.109.260402

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据