4.8 Article

Lagrangian statistical model for transport in highly heterogeneous velocity fields

期刊

PHYSICAL REVIEW LETTERS
卷 101, 期 9, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.101.090601

关键词

-

资金

  1. European FP6 Marie Curie IEF Action [023858]
  2. the Spanish MEC program Ramon y Cajal

向作者/读者索取更多资源

We define an effective Lagrangian statistical model in phase space (x, t, v) for describing transport in highly heterogeneous velocity fields with complex spatial organizations. The spatial Markovian nature (and temporal non-Markoviian nature) of Lagrangian velocities leads to an effective transport description that turns out to be a correlated continuous time random walk. This model correctly captures the Lagrangian velocity correlation properties and is demonstrated to represent a forward model for predicting transport in highly heterogeneous porous media for different types of velocity organizations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Engineering, Chemical

Mixing in Multidimensional Porous Media: A Numerical Study of the Effects of Source Configuration and Heterogeneity

Alessandra Bonazzi, Marco Dentz, Felipe P. J. de Barros

Summary: In this study, we investigate transport of an inert solute in multidimensional porous media and analyze the factors that impact solute mixing. We compare the probability distributions obtained from numerical simulations with the beta distribution and propose variable transformations to improve the fit at low concentrations. The results are validated against existing analytical solution for both homogeneous and heterogeneous media.

TRANSPORT IN POROUS MEDIA (2023)

Article Engineering, Chemical

Modeling Mixing in Stratified Heterogeneous Media: The Role of Water Velocity Discretization in Phase Space Formulation

Joaquim Soler-Sagarra, Jesus Carrera, Enrique Bonet, Carles Roig, Pablo Becker

Summary: This paper proposes a formulation based on the Water Mixing Approach to model solute transport in heterogeneous porous media. The formulation takes into account the scale dependence of dispersion and the separation of mixing from spreading. It introduces velocity as an independent variable, allowing concentration to depend on time, space, and velocity. The formulation, termed the Multi-Advective Water Mixing Approach, incorporates a new mixing term between velocity classes. Experimental results demonstrate the high accuracy of the formulation in both dispersion and mixing, with the mixing process exhibiting Markovianity in space despite being modeled in time.

TRANSPORT IN POROUS MEDIA (2023)

Article Engineering, Chemical

Mixing in Porous Media: Concepts and Approaches Across Scales

Marco Dentz, Juan J. Hidalgo, Daniel Lester

Summary: This review provides an overview of concepts and approaches for quantifying passive, non-reactive solute mixing in porous media flows. It discusses the interrelated processes of stirring, dispersion, and mixing, and reviews different methods to quantify them. The review also emphasizes the multiscale nature of mixing and its dependence on medium structure and flow conditions.

TRANSPORT IN POROUS MEDIA (2023)

Editorial Material Engineering, Chemical

Editorial to the Special Issue: Mixing in Porous Media

Marco Dentz, Daniel R. Lester, Michel F. M. Speetjens

TRANSPORT IN POROUS MEDIA (2023)

Article Environmental Sciences

Solute Trapping and the Mechanisms of Non-Fickian Transport in Partially Saturated Porous Media

Ilan Ben-Noah, J. J. Hidalgo, Joaquin Jimenez-Martinez, Marco Dentz

Summary: In this study, the upscaling of pore-scale solute transport in partially saturated porous media at different saturation degrees was investigated. It was found that the interaction between structural heterogeneity, phases distribution, and small-scale flow dynamics leads to complex flow patterns and broad probability distributions of flow. A continuous-time random walk (CTRW) framework was used to upscale and evaluate the transport of diluted solutes, and the results were compared to direct numerical simulations. The analysis showed that the fluid phase saturation, as well as the Peclet number, influenced the advective tortuosity, characteristic length, fraction of immobile region, mean trapping time, trapping length, and trapping frequency.

WATER RESOURCES RESEARCH (2023)

Article Water Resources

Transient dispersion regimes in heterogeneous porous media: On the impact of spatial heterogeneity in permeability and exchange kinetics in mobile-immobile transport

Laurent Talon, Emma Ollivier-Triquet, Marco Dentz, Daniela Bauer

Summary: Transport processes in the subsurface are strongly influenced by the heterogeneity of the porous structure. The heterogeneity of the permeability field and exchange times have significant impacts on the transient and asymptotic transport regimes. A parametric study is conducted to investigate these impacts and a continuous time random walk (CTRW) model is developed to upscale the transport behaviors.

ADVANCES IN WATER RESOURCES (2023)

Article Engineering, Environmental

Chemicals of emerging concern in coastal aquifers: Assessment along the land-ocean interface

Daniel Gutierrez-Martin, Ruben Gil-Solsona, Maarten W. Saaltink, Valenti Rodellas, Rebeca Lopez-Serna, Albert Folch, Jesus Carrera, Pablo Gago-Ferrero

Summary: This study evaluates the presence and distribution of a wide range of chemicals of emerging concern (CECs) in a Mediterranean coastal aquifer near Barcelona, Spain, and identifies potential markers and tracers for anthropogenic contamination in groundwater and seawater. The results highlight the importance of submarine groundwater discharge as a source of CECs and suggest new approaches for studying the fate and transport of pollutants.

JOURNAL OF HAZARDOUS MATERIALS (2023)

Article Environmental Sciences

Visualizing and evaluating wormholes formation dynamics under flow competition in an intermediate-scale dissolution experiment

Michela Trabucchi, Daniel Fernandez Garcia, Jesus Carrera

Summary: Wormholes are conductive channels formed in highly soluble rocks, playing a crucial role in the sustainability of saline karst aquifers. The dynamics of wormholes depend on the hydrodynamic and geochemical conditions during formation, as well as the competition for flow. However, there is a lack of direct observation and quantification of wormhole dynamics. In this study, an experimental set-up was proposed to visualize and characterize the growth of multiple wormholes, providing insights into the changes in flow and transport behavior of aquifers.

SCIENCE OF THE TOTAL ENVIRONMENT (2023)

Article Environmental Sciences

Using integrative samplers to estimate the removal of pharmaceuticals and personal care products in a WWTP and by soil aquifer treatment enhanced with a reactive barrier

Adria Sunyer-Caldu, Barbara Benedetti, Cristina Valhondo, Lurdes Martinez-Landa, Jesus Carrera, Marina Di Carro, Emanuele Magi, M. Silvia Diaz-Cruz

Summary: The need and availability of freshwater is a major environmental issue, aggravated by climate change. Alternative sources of freshwater, such as wastewater, require extensive treatment to remove contaminants. It is urgent to develop sustainable wastewater treatment techniques and water quality assessment methods.

SCIENCE OF THE TOTAL ENVIRONMENT (2023)

Article Environmental Sciences

Under What Conditions Does Transverse Macrodispersion Exist in Groundwater Flow?

Daniel R. Lester, Marco Dentz, Prajwal Singh, Aditya Bandopadhyay

Summary: This study compares the transverse macrodispersion in porous media with different conductivity structures under purely advective transport. It is found that porous media with smooth, locally isotropic hydraulic conductivity exhibit zero transverse macrodispersion, while non-smooth or locally anisotropic conductivity fields can generate transverse macrodispersion. These findings provide insights into the mechanisms that govern transverse macrodispersion in groundwater flow.

WATER RESOURCES RESEARCH (2023)

Article Physics, Fluids & Plasmas

Numerical modeling of dispersion of swimming bacteria in a Poiseuille flow

A. Ganesh, C. Douarche, M. Dentz, H. Auradou

Summary: This paper presents a numerical study on the dispersion of bacteria in a plane Poiseuille flow, modeling the bacteria as active Brownian ellipsoids. The longitudinal and transverse macroscopic dispersion coefficients are determined and their scaling with the Peclet number is studied. Three different regimes are observed: a Taylor dispersion regime at low shear rate, an intermediate active regime with increased longitudinal dispersion and decreased transverse dispersion, and a new Taylor regime with diffusivity determined by molecular diffusion coefficient. The active regime is shown to originate from the increased time taken by particles to diffuse across the channel gap, and the transition to the active regime is delayed by decreasing the channel height.

PHYSICAL REVIEW FLUIDS (2023)

Article Geosciences, Multidisciplinary

The Role of Anomalous Transport in Long-Term, Stream Water Chemistry Variability

Marco Dentz, James W. Kirchner, Erwin Zehe, Brian Berkowitz

Summary: In this study, we investigate anomalous transport in a hydrological catchment system over a 36-year period at kilometer scales. Using spectral analysis, we examine the fluctuation scaling of long-term time series measurements of chloride, a natural passive tracer, for rainfall and runoff. The findings suggest that the scaling behavior can be described by a continuous time random walk (CTRW) based on a power-law distribution of transition times, indicating the presence of two distinct power-law regimes in the overall travel time distribution in the catchment. The CTRW framework provides a means to assess anomalous transport in catchments and its implications for water quality fluctuations.

GEOPHYSICAL RESEARCH LETTERS (2023)

Article Geosciences, Multidisciplinary

The Relation Between Dissipation and Memory in Two-Fluid Displacements in Disordered Media

Ran Holtzman, Marco Dentz, Ramon Planet, Jordi Ortin

Summary: We develop a thermodynamic framework for quasistatic dissipative systems with multiple metastable states by utilizing the return-point memory of cyclic macroscopic trajectories. Using this framework, we analyze and quantify the energy dissipation during quasistatic fluid-fluid displacements in disordered media. Numerical computations reveal that energy dissipation in quasistatic displacements is primarily caused by abrupt changes in the fluid-fluid configuration between consecutive metastable states (Haines jumps), which depend on microstructure and gravity. Comparison with quasistatic experiments helps determine the relative importance of viscous dissipation.

GEOPHYSICAL RESEARCH LETTERS (2023)

Article Environmental Sciences

Stochastic Dynamics of Two-Dimensional Particle Motion in Darcy-Scale Heterogeneous Porous Media

Aronne Dell'Oca, Marco Dentz

Summary: In this study, we focus on the upscaling and prediction of ensemble dispersion in two-dimensional heterogeneous porous media, specifically transverse dispersion. We investigate the stochastic dynamics of advective particles in the heterogeneous flow field and find that transverse dispersion exhibits ultraslow diffusion due to the solenoidal character of the flow field. By analyzing particle velocities and orientations through equidistant sampling along particle trajectories obtained from direct numerical simulations, we derive a stochastic model that combines correlated Gaussian noise for transverse motion and a spatial Markov model for particle speeds. We compare the model results with detailed numerical simulations in different heterogeneous porous media.

WATER RESOURCES RESEARCH (2023)

Article Geosciences, Multidisciplinary

Using the tidal method to develop a conceptual model and for hydraulic characterization at the Argentona research site, NE Spain

Tybaud Goyetche, Maria Pool, Jesus Carrera, Marc Diego-Feliu, Laura Martinez Perez, Albert Folch, Linda Luquot

Summary: This study applies a simplified numerical methodology to analyze tidal response in a Mediterranean coastal aquifer, considering both hydraulic and mechanical effects. The results demonstrate that mechanical effects play a strong role in the aquifer's response to tides.

HYDROGEOLOGY JOURNAL (2023)

暂无数据