4.7 Article

Jamming in finite systems: Stability, anisotropy, fluctuations, and scaling

期刊

PHYSICAL REVIEW E
卷 90, 期 2, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.90.022138

关键词

-

资金

  1. U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-FG02-05ER46199, DE-FG02-03ER46088]
  2. Dutch physics foundation FOM
  3. Netherlands Organization for Scientific Research (NWO)
  4. NSF through a Graduate Research Fellowship

向作者/读者索取更多资源

Athermal packings of soft repulsive spheres exhibit a sharp jamming transition in the thermodynamic limit. Upon further compression, various structural and mechanical properties display clean power-law behavior over many decades in pressure. As with any phase transition, the rounding of such behavior in finite systems close to the transition plays an important role in understanding the nature of the transition itself. The situation for jamming is surprisingly rich: the assumption that jammed packings are isotropic is only strictly true in the large-size limit, and finite-size has a profound effect on the very meaning of jamming. Here, we provide a comprehensive numerical study of finite-size effects in sphere packings above the jamming transition, focusing on stability as well as the scaling of the contact number and the elastic response.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据