4.7 Article

Entropy increase in K-step Markovian and consistent dynamics of closed quantum systems

期刊

PHYSICAL REVIEW E
卷 89, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.89.042113

关键词

-

向作者/读者索取更多资源

We consider sequences of measurements implemented by positive operator valued measures (POVMs). Starting from the assumption that these sequences may be described as consistent and Markovian, even and especially for closed quantum systems, we identify properties of the equilibrium state that coincide with the properties of typical pure quantum states. We define a physical entropy that converges against the standard entropies in the approach to equilibrium. Furthermore, strict limits to its possible decrease are derived on the basis of Renyi entropies. It is demonstrated that Landauer's principle follows directly from these limits. Since the above assumptions are rather strong, we exemplify the fact that they may nevertheless apply by checking them numerically for some transition paths in a concrete model.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据