4.7 Article

Linear noise approximation for oscillations in a stochastic inhibitory network with delay

期刊

PHYSICAL REVIEW E
卷 90, 期 1, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.90.012702

关键词

-

资金

  1. NSERC
  2. University of Ottawa
  3. CIHR (Canadian Institute of Health Research)
  4. Michael Smith Foundation's EJLB-Michael Smith Chair program
  5. Hope for Depression Research Foundation (HDRF)

向作者/读者索取更多资源

Understanding neural variability is currently one of the biggest challenges in neuroscience. Using theory and computational modeling, we study the behavior of a globally coupled inhibitory neural network, in which each neuron follows a purely stochastic two-state spiking process. We investigate the role of both this intrinsic randomness and the conduction delay on the emergence of fast (e.g., gamma) oscillations. Toward that end, we expand the recently proposed linear noise approximation (LNA) technique to this non-Markovian delay case. The analysis first leads to a nonlinear delay-differential equation (DDE) with multiplicative noise for the mean activity. The LNA then yields two coupled DDEs, one of which is driven by additive Gaussian white noise. These equations on their own provide an excellent approximation to the full network dynamics, which are much longer to integrate. They further allow us to compute a theoretical expression for the power spectrum of the population activity. Our analytical result is in good agreement with the power spectrum obtained via numerical simulations of the full network dynamics, for the large range of parameters where both the intrinsic stochasticity and the conduction delay are necessary for the occurrence of oscillations. The intrinsic noise arises from the probabilistic description of each neuron, yet it is expressed at the system activity level, and it can only be controlled by the system size. In fact, its effect on the fluctuations in system activity disappears in the infinite network size limit, but the characteristics of the oscillatory activity depend on all model parameters including the system size. Using the Hilbert transform, we further show that the intrinsic noise causes sporadic strong fluctuations in the phase of the gamma rhythm.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据