4.7 Article

From one- to two-dimensional solitons in the Ginzburg-Landau model of lasers with frequency-selective feedback

期刊

PHYSICAL REVIEW E
卷 84, 期 3, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.84.036213

关键词

-

资金

  1. MICINN (Spain)
  2. FEDER (EU) [FIS2007-60327 FISICOS]

向作者/读者索取更多资源

We use the cubic complex Ginzburg-Landau equation linearly coupled to a dissipative linear equation as a model for lasers with an external frequency-selective feedback. This system may also serve as a general pattern-formation model in media driven by an intrinsic gain and selective feedback. While, strictly speaking, the approximation of the laser nonlinearity by a cubic term is only valid for small field intensities, it qualitatively reproduces results for dissipative solitons obtained in models with a more complex nonlinearity in the whole parameter region where the solitons exist. The analysis is focused on two-dimensional stripe-shaped and vortex solitons. An analytical expression for the stripe solitons is obtained from the known one-dimensional soliton solution, and its relation with vortex solitons is highlighted. The radius of the vortices increases linearly with their topological charge m, therefore the stripe-shaped soliton may be interpreted as the vortex with m = infinity, and, conversely, vortex solitons can be realized as unstable stripes bent into stable rings. The results for the vortices are applicable for a broad class of physical systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据