4.7 Article

Effective temperatures of a driven, strongly anisotropic Brownian system

期刊

PHYSICAL REVIEW E
卷 83, 期 6, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.83.061407

关键词

-

资金

  1. NSF [CHE 0909676]
  2. Direct For Mathematical & Physical Scien
  3. Division Of Chemistry [0909676] Funding Source: National Science Foundation

向作者/读者索取更多资源

We use Brownian dynamics computer simulations of a moderately dense colloidal system undergoing steady shear flow to investigate the uniqueness of the so-called effective temperature. We compare effective temperatures calculated from the fluctuation-dissipation ratios and from the linear response to a static, long-wavelength, external perturbation along two directions: the shear gradient direction and the vorticity direction. At high shear rates, when the system is strongly anisotropic, the fluctuation-dissipation-ratio-derived effective temperatures are approximately wave-vector independent, but the temperatures along the gradient direction are somewhat higher than those along the vorticity direction. The temperatures derived from the static linear response show the same dependence on the direction as those derived from the fluctuation-dissipation ratio. However, the former and the latter temperatures are different. Our results suggest that the presently used formulas for effective temperatures may not be applicable for strongly anisotropic, driven systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据