4.7 Article

From local to critical fluctuations in lattice models: A nonperturbative renormalization-group approach

期刊

PHYSICAL REVIEW E
卷 82, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.82.041128

关键词

-

向作者/读者索取更多资源

We propose an implementation of the nonperturbative renormalization group (NPRG) which applies to lattice models. Contrary to the usual NPRG approach where the initial condition of the RG flow is the mean-field solution, the lattice NPRG uses the (local) limit of decoupled sites as the (initial) reference system. In the long-distance limit, it is equivalent to the usual NPRG formulation and therefore yields identical results for the critical properties. We discuss both a lattice field theory defined on a d-dimensional hypercubic lattice and classical spin models. The simplest approximation, the local potential approximation, is sufficient to obtain the critical temperature and the magnetization of the three-dimensional Ising, XY, and Heisenberg models to an accuracy on the order of 1%. We show how the local potential approximation can be improved to include a nonzero anomalous dimension eta and discuss the Berezinskii-Kosterlitz-Thouless transition of the two-dimensional XY model on a square lattice.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据