4.7 Article

Statistical mechanics of Beltrami flows in axisymmetric geometry: Theory reexamined

期刊

PHYSICAL REVIEW E
卷 81, 期 6, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.81.066318

关键词

-

资金

  1. European Contract WALLTURB

向作者/读者索取更多资源

A simplified thermodynamic approach of the incompressible axisymmetric Euler equations is considered based on the conservation of helicity, angular momentum, and microscopic energy. Statistical equilibrium states are obtained by maximizing the Boltzmann entropy under these sole constraints. We assume that these constraints are selected by the properties of forcing and dissipation. The fluctuations are found to be Gaussian, while the mean flow is in a Beltrami state. Furthermore, we show that the maximization of entropy at fixed helicity, angular momentum, and microscopic energy is equivalent to the minimization of macroscopic energy at fixed helicity and angular momentum. This provides a justification of this selective decay principle from statistical mechanics. These theoretical predictions are in good agreement with experiments of a von Karman turbulent flow and provide a way to measure the temperature of turbulence and check fluctuation-dissipation relations. Relaxation equations are derived that could provide an effective description of the dynamics toward the Beltrami state and the progressive emergence of a Gaussian distribution. They can also provide a numerical algorithm to determine maximum entropy states or minimum energy states.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据