4.7 Article

How double-stranded DNA breathing enhances its flexibility and instability on short length scales

期刊

PHYSICAL REVIEW E
卷 81, 期 2, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.81.021906

关键词

-

资金

  1. NCRC [BK 21]
  2. National Research Foundation of Korea [과06A1105, 2005-0049268] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

We study the unexpected high flexibility of short dsDNA which recently has been reported by a number of experiments. Via the Langevin dynamics simulation of our Breathing DNA model, first we observe the formation of bubbles within the duplex and also forks at the ends, with the size distributions independent of the contour length. We find that these local denaturations at a physiological temperature, despite their rare and transient presence, can lower the persistence length drastically for a short DNA segment in agreement with experiment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据