4.7 Article

Theory and simulation of two-dimensional nematic and tetratic phases

期刊

PHYSICAL REVIEW E
卷 80, 期 1, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.80.011707

关键词

-

资金

  1. National Science Foundation [DMR-0605889]

向作者/读者索取更多资源

Recent experiments and simulations have shown that two-dimensional systems can form tetratic phases with fourfold rotational symmetry, even if they are composed of particles with only twofold symmetry. To understand this effect, we propose a model for the statistical mechanics of particles with almost fourfold symmetry, which is weakly broken down to twofold. We introduce a coefficient kappa to characterize the symmetry breaking, and find that the tetratic phase can still exist even up to a substantial value of kappa. Through a Landau expansion of the free energy, we calculate the mean-field phase diagram, which is similar to the result of a previous hard-particle excluded-volume model. To verify our mean-field calculation, we develop a Monte Carlo simulation of spins on a triangular lattice. The results of the simulation agree very well with the Landau theory.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据