4.7 Article

Breakup of dense colloidal aggregates under hydrodynamic stresses

期刊

PHYSICAL REVIEW E
卷 79, 期 6, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.79.061401

关键词

-

资金

  1. Swiss National Foundation [200020-113805/1]

向作者/读者索取更多资源

Flow-induced aggregation of colloidal particles leads to aggregates with fairly high fractal dimension (d(f) similar or equal to 2.4-3.0) which are directly responsible for the observed rheological properties of sheared dispersions. We address the problem of the decrease in aggregate size with increasing hydrodynamic stress, as a consequence of breakup, by means of a fracture-mechanics model complemented by experiments in a multipass extensional (laminar) flow device. Evidence is shown that as long as the inner density decay with linear size within the aggregate (due to fractality) is not negligible (as for d(f) similar or equal to 2.4-2.8), this imposes a substantial limitation to the hydrodynamic fragmentation process as compared with nonfractal aggregates (where the critical stress is practically size independent). This is due to the fact that breaking up a fractal object leads to denser fractals which better withstand stress. In turbulent flows, accounting for intermittency introduces just a small deviation with respect to the laminar case, while the model predictions are equally in good agreement with experiments from the literature. Our findings are summarized in a diagram for the breakup exponent (governing the size versus stress scaling) as a function of fractal dimension.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据