4.7 Article

Spectral solutions to stochastic models of gene expression with bursts and regulation

期刊

PHYSICAL REVIEW E
卷 80, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.80.041921

关键词

cellular biophysics; eigenvalues and eigenfunctions; genetics; molecular biophysics; probability; stochastic processes

资金

  1. National Science Foundation [DGE-0742450, ECS-0332479]
  2. National Institutes of Health [5PN2EY016586-03, 1U54CA121852-01A1]

向作者/读者索取更多资源

Signal-processing molecules inside cells are often present at low copy number, which necessitates probabilistic models to account for intrinsic noise. Probability distributions have traditionally been found using simulation-based approaches which then require estimating the distributions from many samples. Here we present in detail an alternative method for directly calculating a probability distribution by expanding in the natural eigenfunctions of the governing equation, which is linear. We apply the resulting spectral method to three general models of stochastic gene expression: a single gene with multiple expression states (often used as a model of bursting in the limit of two states), a gene regulatory cascade, and a combined model of bursting and regulation. In all cases we find either analytic results or numerical prescriptions that greatly outperform simulations in efficiency and accuracy. In the last case, we show that bimodal response in the limit of slow switching is not only possible but optimal in terms of information transmission.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据