4.7 Article

Delay-sustained pattern formation in subexcitable media

期刊

PHYSICAL REVIEW E
卷 77, 期 6, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.77.066220

关键词

-

向作者/读者索取更多资源

The influence of time-delayed feedback on pattern formation in subexcitable media represented by a net of FitzHugh-Nagumo elements, a minimal model of neuronal dynamics, is studied. Without feedback, wave fronts die out after a short propagation length (subexcitable net dynamics). Applying time-delayed feedback with appropriate feedback parameters, pattern formation is sustained and the wave fronts may propagate through the whole net (signature of excitable behavior). The coherence of noise-induced patterns is significantly enhanced if feedback with appropriately chosen parameters is applied, and shows a resonancelike dependency on the delay time. In a next step, the transition to the excitable regime is investigated in dependence on the quota of elements, which get the feedback signal. It is sufficient to control approximately half of the elements to achieve excitable behavior. Regarding a medical application, where the external control of a neural tissue would affect not single neurons but clusters of neurons, the spatial correlation of the controlled elements is of importance. The selection of the elements, which get the feedback signal, is based on a spatially correlated random distribution. It is shown that the correlation length of this distribution affects the pattern formation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据