4.7 Article

Modifications in solvent clusters embedded along the fibers of a cellulose polymer network cause paper degradation

期刊

PHYSICAL REVIEW E
卷 77, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.77.041801

关键词

-

向作者/读者索取更多资源

Plants, algae, and their derivatives (paper, textiles, etc.) are complex systems that are chiefly composed of a web of cellulose fibers. The arrangement of solvents within the polymeric structure is of great importance since cellulose degradation is strongly influenced by water accessibility and external agents. In this paper we develop a model that is able to deconvolve the scattering contributions of both polymeric structures and solvent clusters trapped along the polymeric fibers. The surface morphology of cellulose fibers and the spatial distribution of water-filled pores and their dimensions have been recovered from small angle neutron scattering and atomic force microscopy data in function with paper degradation. In addition to providing a boost to the effort to preserve cellulose-supported material (included cultural heritage), the relevance of our model resides in the exploitation of a large number of biopolymer networks that are known to share structures similar to that of cellulose.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据